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Abstract 
 

Knowledge of in-vivo glenohumeral joint biomechanics after total shoulder 
arthroplasty are important for the improvement of patient function, implant longevity 
and surgical technique.  No data has been published on the in-vivo glenohumeral 
joint contact locations in patients after total shoulder arthroplasty.  Therefore, the 
objectives of this thesis were to determine the in-vivo glenohumeral joint contact 
locations and humeral head translations in patients after total shoulder arthroplasty. 
 First, a non-invasive three dimensional fluoroscopic image matching method 
was developed and validated for use in the shoulder joint complex.  Next, a group of 
patients that have undergone clinically successful total shoulder arthroplasty 
surgeries were recruited for study and imaged by the fluoroscopic imaging technique.  
The fluoroscopic imaging system was recreated in a virtual environment and the in-
vivo kinematics that were recorded by the fluoroscopes were recreated with three 
dimensional models.  The contact centroids of the glenohumeral joint and humeral 
head translations were measured using solid modeling software.  

In summary, this thesis quantified the in-vivo glenohumeral joint contact 
locations and humeral head translations after total shoulder arthroplasty.  These data 
provides surgeons and engineers valuable information for developing surgical 
treatments that may better help recreate ‘normal’ motion of the shoulder after total 
shoulder arthroplasty. 
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Chapter 1 
 

1.1 Introduction 
 
 

Total shoulder arthroplasty (TSA) has become a popular clinical choice for the 

treatment of end-stage shoulder degeneration for a restoration of range-of-motion 

(ROM) and pain relief1.  The term arthroplasty refers to the surgical removal and 

replacement of degenerative articular cartilage surfaces with engineered materials to 

substitute for the body’s natural joint structures.  Current TSA involves the surgical 

visualization of the humeral head and glenoid articular surface in order to remove the 

damaged structures with a bone saw and be replaced with a polyethylene glenoid 

component and cobalt chromium humeral head.  Dr. Charles Neer II first pioneered 

this technique in 1953, when he created the first ‘monoblock’ design at the Columbia-

Presbyterian Medical Center at Columbia University2.  Since that time, numerous 

component designs and surgical techniques have been introduced to the market, 

each with varying degrees of clinical success and acceptance.  Surgical techniques 

have evolved from simply making due with the implants available to careful balancing 

of soft tissues around the anatomic components with minimally invasive surgeries.  

The wide variety of available shoulder implant designs has primarily focused on 

material selection, fixation features, anatomic sizing and most recently recreation of 

the anatomic geometry of the healthy glenohumeral joint.  Needless to say, these 

advancements are only as capable as the surgeon performing the operation.  

Numerous component failures such as component loosening and polyethylene 

damage have been reported after implantation3-7.  Several current case studies3, 8, 9 
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have sought to correlate complication rates, range of motion, subjective shoulder 

values (SSV) and pain scores with surgical technique, rehabilitation protocol and the 

number of TSA operations performed by a surgeon per year.  However, the 

quantitative factors that influence these patient outcomes and affect the performance 

of TSA in-vivo are fairly limited.  No data has been reported on the glenohumeral joint 

articular contact locations or humeral head translations in patients following TSA.  

Such contact kinematic data are necessary for the improvement of implant designs 

and surgical implantation technique; and ultimately to enhance component longevity.  

Therefore, the purpose of this research was to validate a non-invasive imaging 

technique and investigate the glenohumeral articular contact locations and humeral 

head translations after anatomic TSA during active in-vivo shoulder abduction with 

neutral, internal and external rotations using a novel dual plane fluoroscopic image 

matching technique. 
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1.2 Shoulder Overview 
 
 

The shoulder joint complex has the greatest ROM and is the least constrained 

joint within the human body.  It is comprised of four separate joints, the 

acromioclavicular, the sternoclavicular, the scapulothoracic, and the glenohumeral  

joint (Fig 1).  The two primary joints that contribute to the ROM and stability of the 

shoulder joint complex are the scapulothoracic and the glenohumeral joints.  The 

scapulothoracic joint is the tethering of the scapula to the thoracic rib cage by the 

serratus anterior muscle and interdigitated fascia.  The smooth gliding motion of the  

scapula bone on the thoracic ribs results from contraction and relaxation of the 

serratus anterior muscle and the elasticity of interdigitated fascia sandwiched 

 

Figure 1 The intercalated joints of the shoulder complex. 
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between the bones.  On the other hand, the glenohumeral joint is a diarthrodial joint 

where opposing bone surfaces of the glenoid and humeral head are covered in  

hyaline articular cartilage such that the bones of the scapula and humerus directly 

interact with one another transmitting forces through the cartilage layer.  

Osteoarthritis (OA) is the progressive degenerative breakdown of the hyaline articular 

cartilage within a joint that causes bone-on-bone contact.   This bone-on-bone 

contact is incredibly painful and causes many individuals to minimize their use of the 

affected joint, such that, in extreme cases the pain is so severe that the individual 

cannot use the joint at all.  In these extreme cases a total joint replacement 

(arthroplasty) may help restore range-of-motion and relieve pain.  Dr. Charles Neer II 

pioneered total shoulder arthroplasty in 1953, when he created the first ‘monoblock’ 

design at the Columbia-Presbyterian Medical Center at Columbia University2. 

 

Figure 2 Typical total shoulder arthroplasty components. 
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Total shoulder arthroplasty consists of replacing the native articular cartilage of the 

glenoid and the humeral head with a polyethylene glenoid component and polished 

cobalt chromium humeral head component (Fig 2).  The glenoid component is made 

from ultra high molecular weight polyethylene and is shaped to mimic the natural 

glenoid (Fig 3).  The natural glenoid excluding the labrum is on average 39±3.7mm 

(30-48mm) in the superior-inferior direction, 23±2.7mm (18-30mm) in the anterior-

posterior direction in the superior half and 29±3.1mm (21-35mm) in the anterior-

posterior direction in the inferior half of the glenoid10 (Fig 4).  The articular area11 

(Parsons I.M IV 1998 Lecture Presentation Notes, University of Pittsburgh) is 800-

850 mm^2 with an average articular radius10-12 of curvature of 27.2 ±1.6mm and a 

bony radius of curvature of 33.4±3.4mm.  The humeral head component is made 

 

Figure 3 Natural articular surface of the glenoid. 

Parsons 1998 
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from polished cobalt chromium and is spherically shaped like the natural humeral 

head that has a uniform layer of articular cartilage.  The articular surface area of the 

humeral head is approximately three times greater than the articular surface area of 

the glenoid.  The radius of bony curvature10-12 of the humeral head is on average 

25.2±0.7mm and the radius of articular curvature is 25.5±1.5mm (Fig 5).  The smaller 

radius of curvature of the humeral head to that of the glenoid is defined as the radial 

mismatch and is important for allowing the humeral head to translate and rotate on 

the glenoid articular surface4, 5, 13. 

The stability of the shoulder joint is a compromise between static and dynamic 

restraints14, 15.  The static restraints being the superior glenohumeral ligament, the 

medial glenohumeral ligament, the anterior and posterior bands of the inferior 

glenohumeral ligament, the axillary pouch of the inferior glenohumeral ligament, the 

posterior capsule, the biceps tendon, the labrum and the articular cartilage (Fig 6).   

 

 

Figure 4 Glenoid surface. 
 

 

 

Figure 5 Humeral head radius of curvature. 
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The function of the ligaments is to limit excess translation and rotation of the humeral 

head on the glenoid surface at the extreme ranges of motion14, 16.  The dynamic 

restraints are the muscles of the rotator cuff, which are the infraspinatus, 

supraspinatus, subscapularis and teres minor (Fig 7).  Together the combined forces 

generated by these muscles compress the humeral head into the glenoid cavity 

creating a compressive stabilizing effect14, 17.  Damage to these muscles can 

severely limit the function and stability of the shoulder joint.  In the healthy shoulder, 

proper balance between agonist and antagonist rotator cuff muscles provide dynamic 

stability, such that in a total shoulder replacement surgery, the surgeon must properly 

tension these muscles after resecting their insertions to implant the components.   

Biceps Tendon

SGHL

MGHL

AB-IGHL

PB-IGHL

Axillary Pouch-IGHL

Posterior Capsule

Labrum

Cartilage

Figure 6 Static restraints of the shoulder joint complex. 
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Thus a successful total shoulder arthroplasty operation serves not only to reduce 

pain by replacing the damaged articular cartilage surfaces with engineered implants, 

but helps restores ROM by restoring balance to the rotator cuff muscles that 

degenerate over time. 

 

 

Figure 7 The muscles of the rotator cuff. 
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1.3 Previous Research 
 

 

Prior knowledge of TSA can be categorized as retrospective clinical reports, 

in-vitro laboratory experiments, computational studies and in-vivo patient analysis.  

Each of these research designs are not without their advantages and limitations, first 

and foremost, in-vivo patient analysis is the only method to capture data with 

functional muscle loads.  Clinical reports have shown component failure, such as 

glenoid component loosening and polyethylene damage after implantation3-7.  

Several current case studies3, 8, 9 have sought to correlate complication rates, range 

of motion, subjective shoulder values (SSV) and pain scores with surgical technique, 

rehabilitation protocol and the number of TSA operations performed by a surgeon per 

year.  In-vitro cadaveric experiments16-23, albeit limited in muscle loading schemes, 

have isolated geometric and soft tissue factors that affect the amount of translation 

and rotation of the humeral head relative to the glenoid surface.  These in-vitro 

studies have reveled that a wide range of normal glenohumeral translations 12, 17, 19, 

23-28 could exist in the healthy population.  Computational finite element13, 29, 30, 

radiographic 4, 31 and laboratory 5, 32, 33 studies have highlighted the importance of 

glenohumeral radial mismatch on glenoid loosening.  Finite element and laboratory 

studies have also provided theoretical values for TSA glenohumeral translations and 

force transmission into the glenoid surface6, 13, 29, 30, 32, 34, 35.  Glenoid retrieval studies 

have helped to create a classification system for damage mechanisms of the 

polyethylene component while identifying locations on the glenoid surface that 

experience a greater degree of damage in-vivo6, 7, 36, 37.  Bergmann et al. have 



 24

developed an instrumented shoulder prosthesis38 to measure the in-vivo dynamic 

loads, but not location, experienced by the glenohumeral joint during functional 

activities such as combing ones hair.  The in-vivo translations of the center of the 

humeral head relative to the glenoid fossa have been reported using several 

techniques26, 31, 39-41.  However, no data has been reported on the glenohumeral joint 

articular contact locations and humeral head translations in patients following TSA. 
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1.4 Conclusion - Why This Research Was Done 
 

Total shoulder arthroplasty has become the gold standard for restoring ROM 

and pain relief in degenerative shoulder disease.  However, accurate knowledge of 

in-vivo shoulder kinematics still eludes orthopaedists and researchers.  Accurate in-

vivo kinematics is the foundation for relative motion between bones, contact patterns 

of articular surfaces and boundary conditions for finite element and inverse dynamic 

studies.  These data provide orthopaedists and bioengineers a quantitative 

assessment of normal shoulder motion and the tools which to understand the efficacy 

that various surgical modalities have on restoring shoulder pathologies.  To date, no 

data has been reported on the glenohumeral joint articular contact locations or 

humeral head translations in patients following TSA.  Contact locations in patients 

following TSA could be compared to healthy shoulders to determine if normal contact 

kinematics are restored following surgical reconstruction.  Such contact kinematic 

data are necessary for the improvement of implant designs and surgical implantation 

technique; and ultimately to enhance component longevity.  These data combined 

with humeral head translations provide in-vivo parameters for wear simulators of the 

polyethylene glenoid component and a basis which to compare damage modes of 

failed glenoid components.  Thus, quantitatively measuring in-vivo shoulder 

kinematics would open new doors in the field of shoulder biomechanics.  Therefore, 

the purpose of this research was to investigate the glenohumeral articular contact 

locations and humeral head translations after anatomic TSA during dynamically 

stabilized in-vivo shoulder abduction with neutral, internal and external rotations 

using a novel dual plane fluoroscopic imaging technique. 
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Chapter 2 
 

2.1 Non-Invasive Image Matching Method 
 
 

The concept of image matching is relatively straightforward.  A 2D planer 

image or picture of an object is taken and the spatial 3D orientation of the object is 

recreated or matched by viewing the object from the perspective of the camera to the 

image plane and adjusting its position until the projected silhouette overlaps the 

object’s contours on the planer image.  By matching multiple objects in the image 

plane, it is possible to determine the relative position of the objects in spatial 

coordinates.  This technique assumes the knowledge of the distance between the 

camera and image plane and the acquisition of accurate 3D models of the objects in 

question.  Accurate models may be obtained by coordinate measuring machines 

(CMM), laser scanning tools, advanced medical imaging techniques such as MRI and 

CT and directly from Computer Aided Design (CAD) drawings.  However, the single 

image plane method described above suffers from out-of-plane accuracy, which is 

the inability to determine the true distance of the object from the image plane, but can 

be improved upon by using two simultaneous image planes.  In essence, the second 

image plane’s in-plane accuracy becomes the out-of-plane accuracy of the first 

image plane. 

 

Thus, this dual plane image matching technique lends itself to studying the 

bones and implants within the human body to analyze the kinematics of various 
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joints.  However, to look at the bones and implants within the human body, x-rays or 

fluoroscopic images need to be used in place of standard photographs.  First, a joint 

of interest is positioned within the field-of-view of two fluoroscopes of known 

orientation and simultaneous images are taken of the desired joint pose.  Next, the 

fluoroscopic images are corrected for geometric distortion.  Then a virtual dual plane 

fluoroscopic imaging system is created in computer space based on the known 

orientation of the fluoroscopes during imaging.  Three-dimensional models of the 

subject’s bones or implants are imported into the virtual environment and matched to 

2D features on the acquired image pairs.  From each matched pose, the joint 

kinematics has been accurately recreated and the relative position of the bones or 

implants can be quantitatively described.  Therefore, this dual plane imaging 

matching technique with its non-invasive and accurate nature can be safely applied 

to study the kinematics of the shoulder joint complex after total shoulder arthroplasty. 
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2.2 Dual [plane] Fluoroscopic Imaging System (DFIS) 
 

 

The dual plane fluoroscopic imaging system [DFIS] consists of two standard 

mobile C-arm fluoroscopes (12” BV Pulsera, Phillips, USA) arranged with the image 

intensifiers slightly skewed from orthogonal to create an imaging volume such that 

the human shoulder does not contact either imaging plane during normal motion.  

Each C-arm is outfitted with a 12 inch diameter image intensifier such that the 

combined imaging volume is approximately 30 x 30 x 30 cm3.  This imaging volume 

creates a field-of-view that captures the scapula and proximal humerus bones 

throughout their normal range of motion such that the system is capable of capturing 

the kinematics of the glenohumeral joint during functional daily activities (Fig 8). 

 
Figure 8 Dual plane fluoroscopic imaging system shown with a subject in the central 
viewing volume with the shoulder in 90° abduction with maximum external rotation. 
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The distance between the radiation source and the fluoroscopic image intensifier is 

approximately 96 cm providing ample room for the subject to freely maneuver within.  

The fluoroscopes, in addition to static image capture, have the capability to record 

30, 15 and 8 images per second at a uniform distribution.  This cinematic image 

recording capability allows the DFIS to capture dynamic joint motion in real-time.  A 

custom switch unit was built to operate both fluoroscopes simultaneously such that 

the image pairs recorded are synchronized in time (Fig 9). 

During each data collection trial, calibration images are taken of radio-opaque ball 

bearings (beads) in a known orientation for creation of the virtual DFIS environment 

 
Figure 9 Custom switch unit built to operate two fluoroscopes simultaneously with a single input 
from the operator.  Red and black buttons toggle high and low radiation dosage, respectively. 
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and of a copper grid for image distortion correction.  The fluoroscopes electronically 

record the images with 1024 x 1024 pixel resolution in DICOM file format in 8-bit 

grayscale, corresponding to an actual field-of-view that is 295 x 295 mm (Fig 10).  

For data analysis, the images are offloaded from the fluoroscopes to a personal 

computer and RAID backup storage system. 

 
Figure 10 Typical fluoroscopic image of the shoulder with TSA. 
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2.3 Image Correction & Segmentation 
 

The fluoroscopic images suffer a minimal amount of distortion in the recording 

process caused by perturbations of the x-ray beam from the environment and from 

the slightly curved surface of the image intensifier.  An adapted polynomial 

Gronenschild42, 43 global surface mapping technique is employed to remove the “fish-

eye” caused by the curved image intensifier surface and “swirl” caused by electro-

magnetic environmental disturbances.  The technique is employed by mapping a set 

of polynomial expressions between the actual geometry of a copper grid and the 

acquired distorted image of the copper grid (Fig 11). 

 

Figure 11 Typical fluoroscopic image of copper distortion correction plate. 
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Correction of the images is accomplished by using spatial mapping to distort the 

image pixels to their “correct” location based on the mapped polynomial expressions 

by linearly interpolating the image’s intensity values (Fig 12).  All image pairs 

acquired by the DFIS are corrected in this manner before further imaging processing. 

Next, each pair of corrected fluoroscopic images representing a unique shoulder joint 

kinematic pose is opened using a custom Matlab (Matlab 7.0.1, The Math Works Inc., 

Natick, MA) script for automated segmentation.  The segmentation script is based on 

a Canny44 algorithm that uses the gradient of the image’s pixels intensity to 
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Figure 12 The actual holes in the copper plate are shown as blue diamonds.  The distorted 
holes as imaged by the fluoroscope are shown as pink triangles.  The pink triangles will be 
mapped to the blue diamonds using a polynomial expression.  (Units in millimeters) 
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determine the outlines of objects in the image.  The script has a graphical user 

interface so that the operator can visually check the machine’s performance in 

correctly outlining the objects in the image (Fig 13).  In some situations, human 

interaction is required to manually modify the machine’s automated segmentation in 

areas where the gradient changes slower than the set threshold value.  In the case of 

total shoulder arthroplasty, the outlines of the glenoid fixation peg beads, humeal 

head and stem are saved as points in a text file.  The operator discards all other 

outlines that were automatically segmented and deemed ancillary. 

 
Figure 13 Typical fluoroscopic image of the shoulder with TSA after being 
automatically segmented and manually adjusted for ancillary outlines. 
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2.4 Virtual DFIS Environment & Matching 
 

After fluoroscopic imaging of the subject’s shoulder joint, calibration fixtures 

and image distortion correction processing, a replica of the DFIS is created in a 

virtual environment.  This is accomplished with that data acquired from calibration 

images that include the location of the center of the image intensifier and the relative 

position of the fluoroscopes.  The relative position of the fluoroscopes is determined 

by aligning the individual calibration solution of each fluoroscope to one another.  

Within solid modeling software (Rhinoceros, Robert McNeel and Associates, Seattle, 

WA) the aligned solution is replicated by creating two pairs of virtual sources and 

intensifiers such that the replicated geometry is identical to the real fluoroscopic 

imaging system (Fig 14). 

 
Figure 14 Virtual DFIS recreated in computer space from the geometry of the actual 
fluoroscopic system, shown with CAD models of total shoulder arthroplasty. 
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Next, the pairs of corrected fluoroscopic images and segmented outlines are 

imported into the virtual environment and placed on their respective virtual imaging 

plane.  CAD models acquired from the manufacture that include the glenoid, humeral 

head and stem components are introduced into the virtual DFIS.  A coordinate 

system is placed at the center of the articular surface of the glenoid component and 

the center of humeral head component (Fig 15). 

All coordinate systems were defined for the left shoulder joint complex, thus to 

simplify data presentation, all right shoulder joints were mirrored to left shoulder 

joints.  This procedure of importing corrected fluoroscopic images and CAD models is 

repeated for each selected pose that was acquired with the real DFIS.  In order to 

recreate the in-vivo kinematics captured by the DFIS, the imported CAD models must 

 
Figure 15 Left scapula shown with glenoid component.  Cartesian coordinate 
system is created with the origin at the geometric center of the component. 
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first be matched to the outlines on the virtual fluoroscopic image planes.  This is 

accomplished by manually co-registering the projected silhouettes of the 3D CAD 

models with the 2D outlines of the fluoroscopic images.  The virtual model is 

translated and rotated in the virtual DFIS until the 3D model matches the 2D planer 

images, at which point the virtual pose recreates the in-vivo pose of the subject 

during fluoroscopic imaging.  This matching procedure is repeated for both the 

humeral head and stem components.  The in-vivo position of the polyethylene 

glenoid component is recreated by orienting three radio-opaque beads inserted in the 

fixation pegs to their corresponding bead outlines on the fluoroscopic images.  This 

matching technique is needed because polyethylene when imaged by a fluoroscopic 

imaging device in the presence of high-density radio-opaque material, such as the 

cobalt chromium humeral head, tends to ‘wash out’ much of the detail in the image of 

the glenoid.  Once all poses have been recreated in the virtual environment, analysis 

of the coordinates systems placed on the components can be analyzed for relative 

motion and contact. 
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2.5 Accuracy & Repeatability 
 

 

Previously, the accuracy of the DFIS from initial fluoroscopic imaging to 

measuring kinematics in the virtual environment was reported using standard 

geometries of a sphere and cylinder.  The reported accuracies45 were 0.1mm in 

translation and 0.1° in rotation.  Similar accuracy is expected in the case of total 

shoulder arthroplasty components, where both the humeral head and glenoid fixation 

peg radio-opaque marker beads are spherical in geometry.  However, since this 

research focuses on the contact location between the humeral head and glenoid 

surface, the accuracy of this measure is more relevant than the absolute position and 

will be addressed in section 2.6.  Thus, an implicit relation of the absolute position is 

implied from the accurate measure of the contact location.  To measure the 

repeatability of the imaging matching technique a TSA pose was chosen and the 

humeral head and glenoid component were independently matched 15 times each.  

For each trial the components were randomly oriented in the virtual DFIS, such that 

each subsequent match was not affected by the position of the match prior.  After all 

independent matches were performed; a coordinate system was placed at the center 

of the humeral head and glenoid component.  The standard deviation of the 

translation and rotation vectors of the coordinate system was taken as the 

repeatability of the system to locate each component in space (Table 1).  The 

repeatability of the system to match both the glenoid and humeral head components 

were approximately the same order of magnitude for the three orthogonal translations 

directions and three rotations. 
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The system was found to have a minimum repeatability of 0.02mm in translation and 

0.07° in rotation and a maximum repeatability of 0.03mm in translation and 0.15° in 

rotation.  The larger magnitude repeatability in the rotation compared to translation is 

attributed the high degree of symmetry that both components share.  These results 

are on the same order of magnitude as reported for the DFIS system and thus, the 

system is capable of measuring the motion of the shoulder after TSA. 

x (mm) y (mm) z (mm) x (mm) y (mm) z (mm) I j k alpha beta gamma
Mean -22.53 777.22 -4.62 -20.66 779.08 5.03 1.87 1.86 9.65 1.3827 1.3841 0.2666

Std Dev 0.024 0.026 0.028 0.035 0.040 0.030 0.022 0.027 0.005 0.0022 0.0027 0.0019

x (mm) y (mm) z (mm) x (mm) y (mm) z (mm) I j k alpha beta gamma
Mean -15.76 782.06 11.76 -17.40 782.29 21.62 -1.65 0.24 9.86 1.7362 1.5473 0.1671

Std Dev 0.024 0.029 0.016 0.035 0.036 0.017 0.018 0.012 0.003 0.0018 0.0012 0.0018

Direction Cosines (rad)Normal VectorZ-AxisOrigin

Glenoid Component
Origin Z-Axis Normal Vector Direction Cosines (rad)

Humeral Head Component

 

Table 1 The mean and standard deviations reported for fifteen independent 
trials of matching the glenoid and humeral head components. 
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2.6 Contact & Validation 
 

 

One objective of this project was to use the DFIS to investigate the contact 

locations between the humeral head and glenoid components.  The accuracy of the 

system was not defined by the actual position of the components, but rather the 

ability to accurately determine the centroid of contact.  Therefore, an implicit 

relationship holds whereby the ability to accurately measure the contact centroid 

implies that a level of accuracy of the system exists such that the positions of the 

components in space determine the contact centroid.  To verify this relationship and 

determine the accuracy of measuring the in-vivo glenohumeral centroid of contact by 

the recreated TSA joint position in the virtual environment, a silicon rubber casting 

technique was used 46, 47.  First, anatomical total shoulder arthroplasty components 

were implanted in a bone substitute and the distal diaphysis of the humerus was 

potted in PMMA (Poly [methyl methacrylate] bone cement).  The scapula was rigidly 

fixed with the normal to the glenoid surface perpendicular to the ground representing 

roughly a 90° rotation from the anatomical position to simplify in the load application.  

Above the glenoid, the PMMA potted shaft of the humerus was fixed in a cylindrical 

jig mounted to a six degree-of-freedom load cell (160M50S; JR3 Inc, Woodland, CA, 

USA) attached to the manipulator of an industrial robot (UZ150F; Kawasaki Motors 

MFG Corp, Lincoln, NE, USA) (Fig 16).  The humerus was positioned to represent 

approximately 60° and 90° abduction of the long axis of the humerus in neutral 

rotation, taking into account the scapulothoracic rotation with humeral abduction of 

approximately two-to-one 28, 48-51.   
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The DFIS was positioned around the glenohumeral joint.  The joint was disarticulated 

and fast setting silicon rubber (Quick Set; Alumilite CORP; Kalamazoo, MI, USA) was 

placed on the glenoid articular surface, immediately followed by application of 350N 

from the humeral head in the direction perpendicular to the ground.  A force of 350N 

was chosen because it was within the range of reported physiologic glenohumeral 

loads 24, 38, 52-56 and may approximate the holding of a ten pound weight abducted in 

the coronal plane.  The silicon rubber set in approximately one minute.  Fluoroscopic 

images were acquired under load and then the joint was disarticulated.  The silicon 

rubber was squeezed out of the location where contact occurred between the 

humeral and glenoid articular surfaces (Fig 17).  This voided area was digitized 

(MicroScribe® G2LX; Immersion CORP; San Jose, CA, USA) along with geometric 

landmarks on the glenoid component to facilitate alignment in a virtual environment  

 
 

Figure 16 Contact validation setup with robotic manipulation device. 
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(Fig 18).  Similar to the method presented earlier, a virtual DFIS was created and the 

fluoroscopic images corrected for distortion were imported into the virtual 

environment.  The imaged in-vitro positions of the humerus and glenoid components 

were reproduced virtually and the glenoid centroids of contact measured using the 

overlap method described in section 3.2 of this document (Fig 19).  These manual 

pose matching and centroid measurement protocols were repeated twelve 

independent times to access the repeatability of the technique.  The contact centroid 

measured from the overlap method in the virtual environment was compared to the 

area centroid measured from the digitized silicon rubber casting taken as the gold 

standard (Fig 20).  This procedure was repeated for one trial at approximately 60° 

 

Figure 17 Silicon rubber impression. 
 

 

Figure 18 MicroScribe® digitizer. 
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abduction and two trials at approximately 90° abduction of the long axis of the 

humerus in the coronal plane. 

 

Figure 19 The overlap area of the humeral head 
and glenoid component is shown in pink.  The 
black point is the centroid of the pink contact area. 

 

Figure 20 Digitized voided silicon 
area on the glenoid component. 

 
The difference in the absolute distance of the measured centroid of contact between 

the overlap method and silicon rubber casting technique is listed as Delta X/Y, 

respectively in Table 2.  To calculate delta, the average contact centroid location from 

the twelve independent matches was subtracted from the silicon rubber gold 

standard centroid location and the absolute value was taken.  In general, for both X & 

Y directions, the average offset of the overlap method to the gold standard was at 

most 0.30mm, which is on the order of the accuracy of the digitizing equipment.  The 

repeatability of measuring the contact centroid in the virtual environment was defined 

as the standard error of the twelve independent pose match centroid calculations and 

listed as SD X/Y Fluoro, respectively in Table 2.  On average, for both X & Y 
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directions, the standard error of repeating the placement of the centroid of contact 

with the overlap method on the glenoid surface was approximately 0.1mm.  This was 

on the order of the accuracy previously reported45 for our method of reproducing in-

vivo joint positions in a virtual environment.  Therefore, this non-invasive fluoroscopic 

imaging technique can be confidently applied to determine the in-vivo glenohumeral 

articular contact locations in patients after TSA. 

 

Trial Delta X Delta Y SD X Fluoro SD Y Fluoro
90° Abduction (1) 0.63 0.02 0.04 0.08
90° Abduction (2) 0.12 0.03 0.05 0.10

60° Abduction 0.15 0.22 0.05 0.18
Average 0.30 0.09 0.05 0.12

All units in millimeters
 

Table 2 Delta X and Delta Y, respectively are the difference between the calculated centroid of 
contact and the measured centroid using the silicon rubber technique.  SD Fluoro X and SD 
Fluoro Y, respectively are the repeatability of locating the centroid when independently 
matching the glenoid and humeral components within the virtual fluoroscopic imaging system. 
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Chapter 3 
3.1 In-Vivo Shoulder Kinematics: Application of Technique 
 

The dual plane fluoroscopic imaging system (DFIS) has been shown to be 

both accurate and repeatable in the measurement of the centroid of contact of the 

glenohumeral joint.  The non-invasive image matching technique, thus easily lends 

itself to studying the kinematics of the shoulder joint in the living body.  Low radiation 

dosage from fluoroscopic imaging is the only risk that the patient encounters during 

the study, which has been determined to be low on the benefit-to-risk assessment 

performed by the Institutional Review Board (IRB) at the Massachusetts General 

Hospital (MGH).  A cohort of 13 patients following TSA surgery was recruited for 

study under IRB approval.  Each patient was fluoroscopically imaged with the 

shoulder joint in various positions representing functional shoulder motion.  A virtual 

DFIS was recreated for each patient and the kinematics recorded during fluoroscopic 

imaging recreated in the virtual environment with CAD models of the joint 

components.  Contact centroid analysis was performed and locations recorded 

relative to a coordinate system placed at the center of the glenoid component.  The 

location of the center of the humeral head was measured with respect to the center of 

the glenoid component to investigate the coupling of the translation of the humeral 

head to the contact measured on the glenoid surface.  These data provide a basis 

which to compare other surgeons’ results and compare against normal contact 

locations in healthy individuals.  The measurements may help to improve implant 

designs and surgical implantation technique; and ultimately to enhance component 

longevity and increase patients’ ROM and functionality after TSA. 
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3.2 Total Shoulder Arthroplasty - Study Design 
 

 

A total of 13 patients who underwent anatomic TSA (Anatomical Shoulder; 

Zimmer, Warsaw, IN, USA) from 1999-2005 were recruited from the practice of the 

same orthopaedic surgeon.  This study was approved by the institutional review 

board at our institution and informed consent was obtained from all patients before 

participating.  There were eight men and five women with an average age of 61 years 

(range: 37-72 years) at the time of surgery.  All patients had clinically successful 

outcomes and were imaged for this biomechanics study at least 12 months (average: 

32 months, range: 12-88 months) after the date of implantation.  At the time of study, 

all patients were without pain and had a complete range of shoulder motion.  One 

man had bilateral total shoulders.  In total there were nine left shoulders and five right 

shoulders imaged (14 total).  One female patient with a right TSA was not able to be 

analyzed due to motion artifact captured during the image acquisition process.  The 

remaining eight men and four women with nine left and four right TSA (13 total) were 

investigated in this study. 

 

Shoulder contact kinematics were measured using a dual plane fluoroscopic 

imaging system (DFIS) as described in section 2.2.  The fluoroscopes (BV Pulsera; 

Philips, Bothell, WA, USA) were positioned around the shoulder of interest and 

allowed the patient to sit comfortably on a stool while providing ample clearance to 

freely move their arm without bumping the imaging system (Fig 8).  A gonimeter was 

used to control the abduction angle (in the coronal plane) of the humerus with 



 47

respect to the sagittal plane of the body.  The patient was protected from radiation 

exposure by custom lead aprons from the thyroid to just above the knee joint.  Mirror 

image right and left lead vests were manufactured with lead deletes around the 

respective shoulder complex that allowed unobstructed fluoroscopic imaging of the 

joint while providing radiation protection to nearby vital organs.  Each patient 

underwent no more than eight pairs (16 total fluoroscopic images) of simultaneous 

fluoroscopic images, each patient receiving a maximum of 6 mrem of ionizing 

radiation. 

 

The shoulder of interest was first imaged at 0° abduction of the humerus in 

neutral rotation (humerus perpendicular to the ground, elbow in full extension, palm 

parallel to the sagittal plane) in the coronal plane while the patient sat relaxed on a 

stool.  The patient then lifted their arm to 45° of abduction of the humerus in neutral 

rotation (no axial rotation of the forearm with respect to the longitudinal axis of the 

humerus, elbow in full extension) and was simultaneously imaged by both 

fluoroscopes.  Similarly, the shoulder was imaged with the humerus in 90° abduction 

neutral rotation (elbow in full extension, palm parallel to the ground).  Next the 

shoulder was imaged, with the humerus in 90° abduction; the patient flexed the 

elbow to 90° of flexion (palm parallel to the ground) and then actively rotated the 

shoulder into maximum external rotation.  This position was similar the cocked phase 

of throwing motion and is the position that the shoulder is at risk for anterior 

instability.  Finally, the shoulder was actively rotated about the longitudinal axis of the 

humerus in 90° abduction (elbow in 90° flexion) to maximum internal rotation, to 
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represent the opposite position to the cocked phase of throwing motion and 

simultaneous fluoroscopic images were acquired.  These positions were chosen 

because they simulate the shoulder motion required for functional living activities 

such as combing one’s hair.  All trials were conducted under the weight of the 

patient’s own forearm.  No additional weight was held by the subject. 

 

Using the DFIS technique described in this thesis, the geometry of the dual 

plane fluoroscopic imaging system was recreated in solid modeling software 

(Rhinoceros 4.0; McNeel, Seattle, WA, USA) to create a virtual dual plane 

fluoroscopic imaging system.  All acquired image pairs were corrected for geometric 

distortion.  Each patient’s images were placed on their respective virtual fluoroscopic 

intensifier and three-dimensional CAD models of the patient’s humeral head and 

glenoid components were introduced into the virtual environment.  The position of the 

humeral head was manually manipulated in the virtual environment until its 

projections matched the outlines on the fluoroscopic images in both planes.  The in-

vivo position of the polyethylene glenoid component was reproduced in the virtual 

environment by aligning the projections from the acquired images of the radio-

opaque beads implanted by the manufacturer as part of standard production in the 

three outermost pegs to the beads that are part of the CAD glenoid model.  This 

procedure of recreating the in-vivo glenohumeral joint positions with CAD models in a 

virtual environment was repeated for all patients’ image pairs acquired.  The 

accuracy of this method to determine the six degree-of-freedom in-vivo joint positions 

in a virtual environment has been reported in our previous work45, where the method 
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was shown to have a translational accuracy of 0.1mm and rotational accuracy 0.1° in 

three-dimensions. 

 

For each recreated in-vivo glenohumeral joint position in the virtual 

environment, the relative motion of the humeral head to the center of the glenoid 

component and the centroid of articular surface contact between the CAD models of 

the humeral head and glenoid were determined.  To determine the centroid of 

contact, the overlap area of the articular surfaces of the humeral head and glenoid 

was defined on the glenoid component articular surface and the geometric area 

centroid calculated.  In the event that overlap between the articular surfaces was not 

detected, the point of minimum normal distance from the glenoid articular surface to 

the humeral head was defined as the contact location.  This method was verified with 

a silicon rubber casting technique46, 47; details are presented in section 2.6.  To 

quantify the humeral head motion and the contact location on the glenoid surface, a 

Cartesian coordinate system was placed at the geometric center of the glenoid 

articular surface and the humeral head component.  For the glenoid, the superior-

inferior axis was defined as the Y-axis and is approximately collinear with the medial 

scapular spine.  The anterior-posterior axis was defined as the X-axis and is 

perpendicular to the Y-axis, shown in Figure 15.  The distance ( 22 YX + ) from the 

glenohumeral contact centroid to the origin of the Cartesian coordinate system was 

measured for all patients in all imaged shoulder positions.   To quantify the 

glenohumeral contact patterns of the patients, contact centroid locations were 

discretized into a quadrant occupancy percentage, defined as the discrete number of 
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contact occurrences within a quadrant to the total number of positions examined.  

Data presentation was made consistent by mirroring all right glenoid contact locations 

to left glenoid contact locations.  Contact centroid locations are presented unscaled 

on the implanted size of the patient’s glenoid component (small, medium or large). 
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3.3 Glenohumeral Contact Results 
 

Patient specific TSA glenohumeral joint contacts on the glenoid component 

surface are shown in Figure 21.  The observed contact patterns were varied among 

the patients as visualized by the colored coded locations.  The raw data for the 

contact locations on the glenoid surface are shown in Table 3. 

0° to 45° abduction neutral rotation 

All patients showed superior translation of the contact centroids; the average 

superior translation was 13.6mm.  Six of 13 patients had posterior translations; the 

average posterior translation was 4.6mm.  Seven patients showed anterior 

translations on the glenoid articular surface; the average anterior translation on the 

glenoid surface was 4.0mm. 

 

Figure 21 Unscaled patient specific contact locations on the glenoid surface as a function of arm position, 
shown by color code.  All right shoulder contact locations were mirrored to left glenoid components. 
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45° to 90° abduction neutral rotation 

Seven of 13 patients had superior translations; the average superior 

translation was 5.3mm.  Six patients showed inferior translations; the average inferior 

translation was 2.9mm.  Six of 13 patients had posterior translations; the average 

posterior translation was 1.6mm.  Seven patients showed anterior translations on the 

glenoid surface; the average anterior translation was 2.7mm 

 

90° abduction neutral rotation to maximum external rotation 

Four of 13 patients showed superior translations; the average superior 

translation was 3.0mm.  Nine patients had inferior translations on the glenoid articular 

surface; the average inferior translation was 5.4mm.  Seven of 13 patients showed 

posterior translations; the average posterior translation was 3.0mm.  Six patients had 

anterior translations; the average anterior translation was 3.9mm. 

 

90° abduction maximum external rotation to maximum internal rotation 

Eight of 13 patients had superior translations; the average superior translation 

was 8.4mm.  Five patients showed inferior translations on the glenoid surface; the 

average inferior translation was 4.9mm.  Five of 13 patients had posterior 

translations; the average posterior translation was 6.8mm.  Eight patients showed 

anterior translations; the average anterior translation was 6.3mm. 
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In all 65 positions examined, no contact was found at the geometric center (origin) of 

the glenoid component (Table 4).  In all positions, the centroid of articular contact 

was on average 11.0 ± 4.3mm away from the center of the component.  Contact 

locations in 0° abduction of the humerus in neutral rotation were on average the 

furthest away from the center of the glenoid at 12.8 ± 5.0mm.  The contact centroids 

in 90° abduction of the humerus in the coronal plane with maximum active external 

rotation were on average the closest to the glenoid center at 8.3 ± 4.4mm. 

 

Patient Shoulder X Y X Y X Y X Y X Y
1 Left 2.9 4.3 1.3 9.4 0.2 10.3 4.7 15.2 0.1 11.1

3 Left 8.9 5.3 4.9 13.2 5.7 16.7 -2.5 7.4 10.5 -4.5

4 Left -13.5 -10.3 -8.1 4.7 -4.9 1.3 -3.2 6.3 5.9 2.1

5 Right 9.2 -6.3 9.4 9.9 9.1 10.6 8.3 12.2 0.9 16.8

6 Right -0.5 -2.1 -2.4 5.7 -7.8 8.2 -2.4 8.0 2.3 6.1

7 Left 4.1 -17.6 -7.1 9.3 -5.2 7.9 0.5 3.5 -9.0 4.1

8 Left 2.6 -11.9 4.5 4.5 2.8 2.4 0.9 2.1 0.9 11.6

9 Right 5.9 9.4 4.3 13.9 5.1 10.7 6.8 5.2 0.9 14.9

9 Left 14.3 -4.2 9.6 11.3 10.6 4.7 11.6 -0.4 0.5 17.1

10 Left 13.9 -8.9 14.3 -6.8 6.3 13.5 3.7 11.5 -1.8 14.9

11 Left -5.8 -18.6 6.1 9.4 8.1 8.9 -1.3 -2.7 2.8 14.8

12 Left -3.7 -12.3 4.3 4.1 2.9 13.0 3.9 2.5 7.1 0.2

13 Right 11.6 -10.5 8.6 3.9 7.6 4.2 7.6 4.5 0.7 8.6
All units in millimeters

Max 90IR0° 45° 90° Max 90ER

 
Table 3 The locations of the glenohumeral contact on the glenoid surface.  The data is 
not scaled for component size.  Data presentation is made consistent by mirroring all 
right shoulders to left glenoid components. 
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Shoulder 1 2 3 4 5 6 7 8 9 10 11 12 13 Average Std Dev Min
0° 5.2 10.4 17.0 11.2 2.2 18.1 12.2 11.1 14.9 16.5 19.4 12.8 15.6 12.8 5.0 2.2

45° 9.5 14.1 9.4 13.6 6.2 11.7 6.4 14.6 14.8 15.8 11.2 6.0 9.5 11.0 3.5 6.0

90° 10.3 17.7 5.1 14.0 11.3 9.5 3.7 11.9 11.6 14.9 12.1 13.3 8.7 11.1 3.8 3.7

Max 90ER 15.9 7.8 7.1 14.7 8.4 3.6 2.3 8.6 11.6 12.1 3.0 4.6 8.8 8.3 4.4 2.3

Max 90IR 11.1 11.4 6.3 16.8 6.5 9.9 11.6 14.9 17.1 15.0 15.1 7.1 8.6 11.6 3.9 6.3
All units in millimeters

Table 4 Radial distance of the contact centroid from the center of the glenoid 
component.  Data is not scaled for glenoid component size. 

 
 
Glenohumeral joint contact was predominantly on the superior-posterior quadrant 

(Q1) of the glenoid surface representing 61.5% of the total contact for all positions 

(Fig 22).  21.5% (14 of 65) of the total contact was inferior to the glenoid horizontal 

midline, 10 of these 14 contacts were at 0° abduction neutral rotation.  Quadrant 

three, the inferior-anterior quadrant saw only 7.7% (5 of 65) of the total contact, 

where four of these five contacts were at 0° abduction neutral rotation.  The other (1 

of 5) contact in quadrant three was at 90° abduction with maximum active external 

rotation (Fig 23).  In 45° abduction, only one patient had contact in the inferior-

posterior (Q4) quadrant, this same patient had contact in Q4 at 0° abduction, the 

distance between the contact centroids was 2.08mm.  In general, the contact 

frequency distributions were similar for all shoulder positions except 0° abduction of 

the humerus in the coronal plane with neutral rotation.  If we ignore this position, 

92.3% (48 of 52) of the glenoid contact was superior to the horizontal midline with 

active abduction of the humerus. 
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Figure 22 Percent occupancy per quadrant to all shoulder positions imaged. 
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Figure 23 Discrete frequency of quadrant contact per shoulder position imaged. 
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3.4 Humeral Head Kinematics Results 
 

Patient specific humeral head center locations on the glenoid component 

surface are shown in Figure 24.  The observed humeral head center locations were 

varied among the patients as visualized by the colored coded locations.  The raw 

data for the contact locations on the glenoid surface are shown in Table 5. 

 

0° to 45° abduction neutral rotation 

All patients showed superior translation of the humeral head center relative to 

the center of the glenoid; the average superior translation was 3.5mm.  Ten of 13 

patients had posterior translations; the average posterior translation was 1.4mm.  

Three patients showed anterior translations of the humeral head center; the average 

anterior translation was 1.6mm. 

Figure 24 Unscaled patient humeral head center locations on the glenoid surface as 
a function of arm position, shown by color code.  All right shoulder humeral head 
centers locations were mirrored to left glenoid components. 
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45° to 90° abduction neutral rotation 

Four of 13 patients had superior translations of the humeral head center; the 

average superior translation relative to the center of the glenoid was 1.9mm.  Nine 

patients showed inferior translations; the average inferior translation was 1.0mm.  

Five of 13 patients had posterior translations; the average posterior translation was 

1.6mm.  Eight patients showed anterior translations of the humeral head center; the 

average anterior translation was 1.1mm 

 

90° abduction neutral rotation to maximum external rotation 

Three of 13 patients showed superior translations; the average superior 

translation was 0.3mm.  Nine patients had inferior translations of the humeral head 

center relative to the glenoid; the average inferior translation was 1.2mm.  One 

patient did not translate superior-inferior during this shoulder position.  Seven of 13 

patients showed posterior translations; the average posterior translation was 1.1mm.  

Six patients had anterior translations; the average anterior translation was 0.9mm. 

 

90° abduction maximum external rotation to maximum internal rotation 

Nine of 13 patients had superior translations; the average superior translation 

was 2.2mm.  Four patients showed inferior translations of the humeral head center 

relative to the glenoid; the average inferior translation was 0.6mm.  Five of 13 

patients had posterior translations; the average posterior translation was 2.0mm.  

Eight patients showed anterior translations; the average anterior translation relative 

to the center of the glenoid was 2.7mm. 
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In all 65 positions examined, the humeral head center was not centered at the 

geometric center (origin) of the glenoid component (Table 6).  In all positions, the 

center of the humeral head was on average 2.8 ± 1.6mm away from the center of the 

glenoid component.  Humeral head centers in 0° abduction of the humerus in neutral 

rotation were on average the furthest away from the center of the glenoid at 3.1 ± 

1.8mm.  The contact centroids in 90° abduction of the humerus in the coronal plane 

with maximum active external rotation were on average the closest to the glenoid 

center at 2.3 ± 1.9mm. 

Patient Shoulder X Y X Y X Y X Y X Y
1 Left 0.3 0.5 1.4 4.1 0.1 2.1 1.2 2.3 0.0 2.4

3 Left 2.0 0.9 2.2 3.5 0.7 2.0 -0.3 1.0 3.2 -0.6

4 Left -3.4 -1.8 -2.5 0.9 -0.7 0.2 -0.5 0.9 2.0 0.5

5 Right 1.0 -0.6 2.7 1.3 3.4 1.7 2.1 1.0 0.1 1.6

6 Right -1.3 -1.0 -0.3 0.7 -1.0 1.1 -0.3 1.1 0.3 0.9

7 Left 1.3 -4.9 -1.6 2.1 -1.2 1.8 0.1 0.8 -2.1 0.9

8 Left 1.1 -3.4 1.6 1.0 1.0 0.5 3.0 0.6 0.4 3.0

9 Right 1.3 1.4 2.6 4.5 2.2 2.5 3.4 1.4 0.6 5.2

9 Left 2.7 -0.8 1.9 2.2 6.7 1.8 7.7 0.2 0.2 4.4

10 Left 2.7 -1.5 3.5 -1.1 1.5 2.6 0.6 1.9 -0.7 4.2

11 Left -2.5 -6.0 2.6 2.4 1.1 1.2 -0.2 -0.3 1.4 4.7

12 Left -0.6 -1.8 1.2 0.7 1.6 3.9 0.9 0.4 2.8 0.1

13 Right 5.0 -2.6 3.8 1.1 2.8 1.0 2.6 1.0 0.4 2.1
All units in millimeters

0° 45° 90° Max 90ER Max 90IR

Table 5 The locations of the humeral head center on the glenoid surface.  The 
data is not scaled for component size.  Data presentation is made consistent by 
mirroring all right shoulders to left glenoid components. 
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Shoulder 1 2 3 4 5 6 7 8 9 10 11 12 13 Average Std Dev Min
0° 0.6 2.2 3.8 1.2 1.6 5.0 3.5 2.0 2.8 3.1 6.5 1.9 5.6 3.1 1.8 0.6

45° 4.3 4.2 2.7 3.0 0.8 2.6 1.9 5.2 2.9 3.6 3.5 1.4 4.0 3.1 1.3 0.8

90° 2.1 2.1 0.8 3.8 1.5 2.1 1.1 3.3 6.9 3.0 1.7 4.2 3.0 2.7 1.6 0.8

Max 90ER 2.6 1.1 1.0 2.4 1.1 0.8 3.1 3.7 7.7 2.0 0.4 1.0 2.8 2.3 1.9 0.4

Max 90IR 2.4 3.2 2.1 1.6 0.9 2.3 3.0 5.2 4.4 4.3 4.9 2.8 2.1 3.0 1.3 0.9
All units in millimeters

Table 6 Radial distance of the center of the humeral head from the center of the 
glenoid component.  Data is not scaled for glenoid component size. 

 
 
The humeral head center was predominantly on the superior-posterior quadrant (Q1) 

of the glenoid surface representing 63.1% of the total contact for all positions.  20.0% 

(13 of 65) of the total contact was inferior to the glenoid horizontal midline, 10 of 

these 14 contacts were at 0° abduction neutral rotation.  Quadrant three, the inferior-

anterior quadrant saw only 7.7% (5 of 65) of the total contact, where four of these five 

contacts were at 0° abduction neutral rotation.  The other (1 of 5) contact in quadrant 

three was at 90° abduction with maximum active external rotation.  In general, the 

contact frequency distributions were similar for all shoulder positions except 0° 

abduction of the humerus in the coronal plane with neutral rotation.  If we ignore this 

position, 94.2% (49 of 52) of the glenoid contact was superior to the horizontal 

midline with active abduction of the humerus. 
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3.5 Coupled Motion 
 

Patient specific glenohumeral contact locations on the glenoid and humeral 

head center locations on the glenoid component surface are shown in Figure 25.  

The glenoid contact locations translated on the glenoid surface in the same direction 

as the humeral head center, but at a smaller magnitude as visualized by the colored 

coded locations.  The raw data for the contact locations and humeral head centers on 

the glenoid surface are shown in Table 3 and Table 5, respectively. 

The direction of the glenohumeral contact centroid followed the direction of the 

humeral head center (Fig 25).  The glenohumeral contact translation in the X 

direction was on average 2.6 times greater than the translation of the humeral head 

center.  Similarly, the glenohumeral contact translation in the Y direction was on 

 
Figure 25 Unscaled patient specific glenoid contact locations and humeral head center 
locations on the glenoid articular surface as a function of arm position, shown by color code.  
All right shoulder locations were mirrored to left glenoid components. 
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average of 4.0 times greater than the translation of the humeral head center (Fig 26).  

Both X and Y slope linear regressions were found significant at p<0.001. 

Xg = 2.6Xh
R2 = 0.74

Yg = 4.0Yh
R2 = 0.84
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Figure 26 Plot of the glenoid contact centroid translation versus the humeral head center translation, 
showing the ratio of glenohumeral contact translation to the humeral head in X and Y directions. 

 
 
The ratio of the X coupling to the Y coupling of the glenoid contact location to the 

center of the humeral head is given by: 65.0
0.4
6.2
=  

The ratio of the average physical dimensions of the glenoid cavity is10: 

( ) 67.0
392

2923
=

+
mm

mmmm  

The amount of measured translation in patients after TSA of the glenoid contact 

location to the humeral head center is approximately proportional to the physical 

dimensions of the glenoid component as shown by comparing the ratios 0.65 ~ 0.67. 
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3.6 Discussion - Comparison With Previous Results 
 

 

A restored range of motion, pain relief1 and durability are primary outcomes 

sought by patients after TSA for treatment of end-stage shoulder degeneration.  The 

prosthetic shoulder implant design and surgical technique together help facilitate 

these patient goals. However, component failures, such as glenoid loosening and 

polyethylene damage have been reported in the literature3-7.  To this end, in-vivo 

glenohumeral joint contact kinematics are necessary for the improvement of implant 

design and surgical implantation technique; and ultimately to enhance component 

longevity.  Therefore, the purpose of this study was to quantify the glenohumeral 

kinematics in patients after anatomic TSA and report their humeral head center 

translations and glenoid contact locations using a non-invasive dual plane 

fluoroscopic imaging technique.  In doing so, we proved our null hypothesis that 

anatomic TSA glenohumeral articular joint contact is not centered on the glenoid 

surface.  Furthermore, there was contact variation among the patients and contact 

centroids translated significantly on the glenoid surface demonstrating that contact 

kinematics are not ‘ball-in-socket’ as traditionally thought17, 24, 26-28. 

 

Several cadaveric studies have documented the healthy glenohumeral 

articular contact locations in-vitro, however no study has reported on TSA contact 

kinematics.  For example, Conzen and Eckstein57 in cadavera without shoulder 

pathology used FUJI Prescale film to show that only parts of the glenoid fossa exhibit 

contact under load, they reported both central and bicentric (superior-inferior) contact 
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areas.  Specifically, during normal abduction in the scapular plane without external 

rotation, they found 3 of 10 glenohumeral joints with central contact, 4 of 10 with 

bicentric (superior-inferior) contact and 3 of 10 with mixed contact areas.  They 

reported that with increasing abduction of the humerus there was a superior 

migration of the contact area in the specimens with central contact patterns (3 of 10).  

Additionally, they reported that superior migration was found in the joints of bicentric 

(superior-inferior) load-bearing areas (4 of 10), but that this was less obvious than 

with the central contact area specimens.  Likewise, Soslowsky et al. found with a 

sterophotogrammetry analysis58 that at 0° abduction in the humeral starting rotation, 

contact on the glenoid was split 74% anterior and 26% posterior.  They found that as 

the humerus increased abduction, the contact area shifted slightly posterior.  Thus, at 

60° abduction, the contact was 63% anterior and 37% posterior, and at 120° 

abduction, the contact was 62% anterior and 38% posterior, and finally at 180° 

abduction, the contact was 37% anterior and 63% posterior.  Additionally, Soslowsky 

et al. described a slight inferior shift of contact on the glenoid fossa with increasing 

abduction of the humerus from 0° to 180° abduction. 

 

The results of Conzen and Eckstein57 are contrasted with our present study 

where we report that the majority of contact is in the superior-posterior quadrant of 

the glenoid component, as opposed to central or superior-inferior contact.  Also, we 

did not observe any bicentric or multi-point contact on the glenoid surface, which may 

be explained by the rigid materials of shoulder prosthetics compared to natural 

compliant articular cartilage.  Soslowsky et al. report58 that at 0° abduction, 
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approximately 38% of the contact was on the inferior glenoid surface, however we 

found 77% (10 of 13) of contact on the inferior glenoid surface.  Additionally at 0° 

abduction, Soslowsky et al. report approximately 51% of the contact in the superior-

anterior quadrant of the glenoid surface; in contrast we found no contact in this 

shoulder position and quadrant.   

 

However, the results presented in this thesis do parallel a previous study 

conducted in our lab59 where we reported that the in-vivo glenohumeral joint contact 

centroids of healthy volunteers are not centered and translated significantly on the 

glenoid surface.  We also found similar contact frequencies for the inferior-anterior 

quadrant, having reported a 4% (1 of 25) contact frequency in the normal subjects 

and a 7.7% (5 of 65) contact frequency in anatomic TSA patients.  These results 

suggest that anatomic TSA shoulder mechanics do not follow ‘ball-in-socket’ motion 

and result from the recreated anatomic glenohumeral geometry.  The recreated 

glenohumeral anatomy in TSA patients is accomplished through the correct sizing of 

the humeral and glenoid components coupled with surgical implantation in an 

anatomic orientation.  Anatomically designed shoulder components incorporate a 

radial mismatch4, 5, 13, 25, 60 between the radius of curvature of the humeral head and 

glenoid articular surface to mimic the radial mismatch between the articular cartilage 

surfaces of the native joint10-12, 17.  This radial mismatch in anatomic TSA allows the 

implanted humeral head component to translate on the glenoid surface just as found 

in the healthy volunteer shoulders, thereby recreating a normal motion pattern that is 

not ‘ball-in-socket.’ 
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The observed contact patterns in this study, specifically the preferred contact 

in the superior-posterior quadrant of the glenoid surface representing 40 of 65 total 

positions imaged is not explained from the anatomic geometry alone.  Because the 

geometric symmetry of the components should not favor any one quadrant on the 

glenoid surface, when the concave, convex and compressive nature of the 

glenohumeral joint should favor centered contact, which our study has shown 

otherwise.  In support of this preferred contact, retrieval studies have found 

significant damage in the superior-posterior portion of retrieved glenoid components6, 

7.  The reason for preferred superior-posterior contact in TSA patients is currently 

unknown; although several factors could be soft tissue balance of the rotator cuff, 

glenoid version and priopreceptive neuromuscular control.  Nevertheless, 0° 

abduction of the humerus with neutral rotation in the coronal plane exhibited the 

greatest variation of contact quadrant frequency, yet no contact was found on the 

superior-anterior quadrant.  In general, the contact centroids at 0° abduction were the 

most inferior of all positions imaged and may result from a lack of isometric muscle 

contraction (relaxed muscles) needed to maintain this arm position compared to the 

other arm positions studied, thus allowing the humeral head to translate inferiorly on 

the glenoid surface.  To delineate this inferior contact phenomenon, future studies 

should ask the patient to shrug their shoulder in this position, both with and without 

additional weight held in the hand. 

 
Previous studies have investigated the motion of the center of the humeral 

head relative to the glenoid center.  Poppen and Walker28 used plane film two 
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dimensional x-rays to investigate the in-vivo superior-inferior motion, reporting that 

the average translation was 1.09 ± 0.47mm.  Harryman et al. investigated the three 

dimensional translation of the humeral head center using a magnetic tracking system 

in cadavers23.  Using an MRI technique Rhoad et al. reported the in-vivo motion in 

the anterior-posterior direction as ±2.1mm and the superior-inferior direction ±1.7mm 

away from the center of the glenoid61.  Similarly Schiffern et al. using an MRI testing 

protocol measured the in-vivo anterior-posterior translation as 1.9mm in the anterior 

direction and 2.2mm in the posterior direction62.  The various reported values for the 

translation of the humeral head center can possibly be attributed to the measuring 

techniques.  For MRI measurements, the patient is lying supine and the shoulder is 

held in the position of interest for several minutes for each pose image.  By having 

the patient lie supine, the direction of gravity is changed from acting in the superior-

inferior direction to the anterior-posterior and may affect the amount of measured 

translation.  In addition, the shoulder is supported in the MR machine for each pose 

and may allow the muscles of the rotator cuff to relax causing the measured 

translations to be greater than they would be under dynamic conditions. 

 

Comparing the measured humeral head translations after TSA found in this 

study to that of previous studies is challenging because the motions of the shoulder 

were different for each study.  However, for all positions examined (65 total) the 

average anterior-posterior location and average translation was 1.2mm ± 2.0mm and 

the average superior-inferior location and average translation was 1.0mm ± 2.1mm.  

Thus on average the location of the center of the humeral head was 1.2mm posterior 
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and 1.0mm superior, which is consistent with having 63.1% of the humeral head 

center locations in the superior-posterior quadrant.  The average translations are 

similar to those previously reported61, 62 and may suggest that the amount of humeral 

head translations are relatively insensitive to measurement technique and shoulder 

position.  The data suggests the center of the humeral head remains relatively 

centered on the origin of the glenoid component within approximately ±2mm in both 

the X and Y direction.  However, this small translation is not ‘ball-in-socket’ which 

implies that the contact centroid of the glenoid and humeral head remain centered on 

the glenoid component.  This coupling of the translation of the humeral head and the 

glenoid contact location was shown in Figure 25, where the location of the humeral 

head center directly effected the location of the contact.  Such that, the observed 

strong translational coupling between the humeral head center and glenohumeral 

articular contact centroid shows that for small translations of the humeral head center 

the glenoid contact can shift significantly on the glenoid articular surface; thus 

indicating the effect of glenohumeral radial mismatch4, 5, 13, 25, 60 on shoulder joint 

contact biomechanics. 

 

The effect of radial mismatch was investigated, although the low sample size 

of 13 shoulders was not significant to find how the radial mismatch may influence the 

translation of the humeral head on the glenoid surface after TSA.  Walsh et al. has 

said that the ideal radial mismatch is between 5mm and 7.5mm, although these 

values were determined primarily from minimizing the radiolucency of the glenoid 

component in the scapula bone and not from understanding the translations of the 
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humeral head and the effect on the glenohumeral contact location4, 63.  A radial 

mismatch of 2.7mm to 7.4mm was recorded for the 13 patients investigated in this 

study.  There was not a relationship between the radial mismatch and the observed 

translation of the humeral head.  Future studies should include a large sample of 

patients with a wide range of radial mismatches to discern how the mismatch amount 

may affect the magnitude of the humeral head center and the amount of influence 

that the translation of the humeral head has on the contact centroid of the 

glenohumeral joint.  These results may have significant implications for component 

designs and the ultimate longevity of the components.   
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Chapter 4 
 

4.1 Discourse 
 

 

This work quantified for the first time the in-vivo glenohumeral joint contact 

locations and humeral head centers in patients after TSA using a non-invasive three-

dimensional image matching technique.  The glenohumeral contact locations and 

humeral head translations are unique to the 3D ability of the technique presented in 

this thesis.  Previous studies have sought to quantify the humeral head translations 

relative to the glenoid in both normal and TSA patients, however, the limitations of 

the previous methods23, 28, 61, 62 may reduce the clinical and biomechanical impact of 

the results.  The previous methods can be broken down to in-vitro and in-vivo 

assessments.  In-vitro measurements have the advantage of using invasive 

measurement techniques, but suffer from the lack of dynamic physiological muscle 

loading.  The absence of muscle loading significantly alters the humeral head 

translations and thus effects the glenohumeral contact locations.  Current in-vivo 

techniques for measuring humeral head translations, however sophisticated, suffer 

from limited accuracy and 3D analysis.  Thus the techniques presented in this work 

address the short comings of previous in-vitro and in-vivo analysis of shoulder joint 

kinematics.  The method presented provides a structured approach for measuring the 

in-vivo shoulder kinematics under physiological loading conditions to analyze 

humeral head translations and glenohumeral joint contact locations. 
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4.2 Advantages & Limitations 
 

 

Although this thesis seeks to address the limitations of previous research, the 

study design is not without its own set of limitations.  Our patient population was 

limited to 13 clinically successful TSA operations and their resultant contact 

kinematics without distinguishing gender and dominance differences.  The relative 

implanted position of the glenoid component to the glenoid vault orientation with 

respect to preoperative x-ray or CT image studies and its effect on glenohumeral 

contact locations was not assessed.  Thus, the amount of glenoid version and 

superior-inferior tilt corrected for in the reaming process of the TSA procedure could 

not be correlated to posterior contact on the glenoid articular surface.  In addition, all 

shoulder orientations examined in this study were imaged under static conditions by 

the dual plane fluoroscopic imaging system.  However, the patient was required to 

dynamically stabilize and position their arm to the desired shoulder orientation of 

interest and actively hold this pose for approximately five seconds for image 

alignment and acquisition.  Glenohumeral joint loading was under forearm weight 

only; no additional weight was held by the patients during abduction and internal and 

external rotation motions.  Future studies should quantify gender and dominance 

differences, the effect of glenoid version on contact centroids, dynamic glenohumeral 

joint contact motion and the effect that increased glenohumeral loading has on 

contact locations.   
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Another limitation of this study revolves around the overlap method for 

determining the contact centroid between the glenoid and humeral head component.  

Specifically the dimensional differences between the components CAD models and 

the machined parts tolerances that coupled with the positional accuracy of the 

components placement in the virtual environment affect the amount of component 

overlap and thus the location of the contact centroid.  However, rigorous validation of 

this method is presented in section 2.6 and shows that in spite of these technical 

challenges, the overall system’s ability to measure the contact centroid location is 

highly repeatable and accurate.  This overlap method was applied to 48 of 65 

positions in the virtual environment, 17 other shoulder positions did not show overlap 

between the glenoid and humeral head components.  In these 17 cases, the 

minimum normal distance between the components articular surfaces were found 

and defined as the contact centroids.  For these reasons, it is important to remember 

that this thesis presents the centroids of contact and not that of actual contact areas 

of the glenohumeral joint following TSA.  Nonetheless, the data from this study may 

provide an insight to shoulder biomechanics and help with understanding damage 

mechanisms of the polyethylene glenoid component in-vivo. 
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4.3 Future Work 
 

The data and validated technique from this thesis provide the insight 

necessary to investigate other shoulder joint related kinematics questions.  The non-

invasive image matching technique was modified to use cinematic fluoroscopic image 

acquisition in place of static image capture as recorded in the glenohumeral contact 

locations presented in this work.  Cinematic image capture allows the real-time 

dynamic motion capture of the shoulder joint at 30, 15 and 8 images per second at a 

uniform distribution.  This method was applied to investigate the dynamic 

scapulothoracic kinematics in a patient after TSA.  The results are the first to suggest 

that the relative contribution of the glenohumeral and scapulothoracic joints on 

abduction and adduction may not be constant as previously thought.  Similarly, the 

DFIS was validated using a cadaver model to assess the systems ability to 

accurately track bone models compared to the bead tracking method taken as the 

‘gold standard’ during dynamic motion of the shoulder joint complex.  The 

assessment has shown that the DFIS is accurately able to measure the kinematics of 

the native joint non-invasively and opens the door to investigate real life problems 

such as understanding the kinematics of throwing a baseball or lifting a weight.  In 

addition, these data provided a validated and accurate technique that can be used to 

apply for grant funding and investigate larger populations to establish a database of 

‘normal’ shoulder motion which can be used as the comparison for future studies of 

pathologic shoulder conditions to investigate the effect that surgical modalities and 

treatment efficacies have on the restoring shoulder joint motion. 
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4.3.1 Dynamic Scapulothoracic Kinematics After TSA 
 
Introduction 

Preserving scapular function following total shoulder arthroplasty (TSA) is 

essential for maintaining the normal range of dynamic motion of the shoulder joint 

complex.  However, the ability to accurately measure in-vivo glenohumeral and 

scapular motion remains a challenge in the field of bioengineering.  Single plane 

radiography was used to explore scapular rotation, but is limited to motion parallel to 

the imaging plane50.  Bi-plane x-ray systems have been developed to overcome this 

limitation; however, these systems can suffer from relatively high radiation dosages41, 

64.  To minimize these effects, 6DOF electromagnetic tracking devices have been 

attached to the shoulder joint complex to measure scapulothoracic kinematics; 

except at large humeral abduction angles they can suffer skin motion artifacts65, 66.  

The purpose of this study was to investigate the feasibility and repeatability of using 

dual orthogonal cine fluoroscopy to quantify the dynamic scapular motions of living 

subjects after anatomic TSA. 

 
Material and Methods 
 

One TSA patient with anatomical shoulder components (Anatomical Shoulder 

System, Zimmer, Warsaw, IN) was recruited under IRB guidelines and informed 

consent.  The replaced shoulder was scanned at 30 frames per second while the 

patient performed dynamic abduction and adduction in the field of view of two 

fluoroscopes (BV Pulsera, Philips, Bothell, WA).  The shoulder was scanned in a 

cycle from approximately 27° to 55° abduction/adduction over a period of six 
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seconds.  The fluoroscopic images and CAD models were used to create a virtual 

dual fluoroscopic imaging system (DFIS)45.  The scapular motions were tracked by 

matching the glenoid model using radiographic beads implanted in the glenoid 

fixation pegs from the manufacture to the fluoroscopic images.  Similarly, the humeral 

components were tracked by matching the outlines of their CAD models to the 

fluoroscopic images.  The in-vivo scapular position at each abducted/adducted and 

rotated position was therefore reproduced using the TSA models.  From these 

models, a coordinate system was placed at the center of the glenoid articular surface 

and tracked through selected frames of the imaging sequence (Fig 27).  The first 

frame of the sequence served as a normalization for geometric comparison of the 

scapular motions during the imaging period (Fig 28).  The repeatability of reproducing 

the scapular motion was evaluated by comparing the scapular motion determined by 

six independent glenoid matches of selected position within the motion cycle. 

 
Results 
 

In-vivo scapular rotation kinematics in 6 DOF after anatomic TSA have been 

reported relative to a normalized coordinate reference system during a 30° 

abduction/adduction cycle of the humerus relative to the vertical.  Figure 29 shows 

the rotations about the axes created at the center of the glenoid articular surface.  

The range being -2° to 23° about the anterior-posterior axis (Y-axis), -11° to 2° about 

the superior-inferior axis (X-axis), and -8° to 12° about the proximal-distal axis (Z-

axis).  The repeatability of matching the scapula was found to be 0.1mm in translation 

and 0.2° in rotation during dynamic motion. 
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Figure 27 A virtual dual plane fluoroscopic imaging system with TSA 
components in an abduction / adduction animation sequence.  The cycle 
begins in the top image with a humeral abduction of 28° to the vertical, 
peaks in the third image at 55° and ends with the bottom image at 23°. 
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Figure 28  Axes definition of the glenoid with respect to a left shoulder complex 
shown on the white glenoid.  The complex motion path of the glenoid in 
abduction and adduction over one test cycle is shown by the blue glenoid. 
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Figure 29 Euler angular rotations of the glenoid normalized to the initial position 
and humeral abduction / adduction relative to the vertical versus the cycle time.  
Error bars not shown because they are too small to clearly render. 
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Figure 30 Scapular rotation about the glenoid midline (Y axis) versus abduction / 
adduction of the humerus relative to the vertical in the plane of the scapula.  
Hysteresis is exhibited between the transition from abduction to adduction. 
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Discussion 
 

This work presents the first data on a patient specific gleno-scapular motion 

after anatomic TSA during a dynamic in-vivo abduction and adduction scapular cycle 

that simulates daily function.  The data indicated that for a humeral abduction of 55° 

to the vertical, the scapula rotated by about 25° normalized to the initial position, 

indicating a strong coupling rotation between the humerus and the scapula consistent 

with the literature41, 50, 64-66.  Figure 30 shows the relative coupling of the upward and 

downward rotation of the scapula to the abduction/adduction motion of the humerus 

during one test cycle.  The data indicates that the coupling motion exhibits hysteresis 

in the transition from the abduction to the adduction phase of arm motion.  However, 

although the patient was told to raise and lower the coffee mug in the same path 

during the cycle, they were free to choose their own trajectory and could have altered 

course influencing the amount of hysteresis. Future studies will incorporate a hand 

rail that the patient will slide their hand along to prevent accidental movement off 

course.  In addition, additional patients will be recruited to build a robust database of 

scapular motion after anatomic TSA.  Nevertheless, these pilot data provide 

feasibility and repeatability of the systems capability to capture dynamic scapular 

motion in 6 DOF utilizing a dual fluoroscopic cine imaging technique.  These data 

provide guidelines for future investigation of coupled scapulothoracic kinematics in 

patients after anatomic TSA and in normal subjects using MRI based bone and 

cartilage models to investigate glenohumeral contact kinematics during dynamic 

activities such as pitching a baseball. 
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4.3.2 Dynamic Shoulder Kinematics - Validation of DFIS 
 
Introduction 
 

Dynamic shoulder kinematics are important for understanding the injury 

mechanics of the shoulder joint complex and for the improvement of surgical 

treatment modalities of the injuries.  Until recently, little knowledge has been reported 

on dynamic in-vivo shoulder biomechanics67, 68.  The purpose of this study was to 

validate a non-invasive shoulder model based tracking technique to the ‘gold 

standard’ marker based technique using a dual plane fluoroscopic imaging system as 

the shoulder joint was dynamically positioned. 

 
Methods 
 

One male fresh frozen cadaver (age 30) was rigidly fixated to a custom 

apparatus through pedicle screws in the spinal column that allowed unrestrained 

motion of the shoulder joint complex (Fig 31).  Titanium beads (1/8” diameter) were 

implanted into the bony surfaces of the humerus and scapula away from the articular 

cartilage without venting the joint capsule.  Fluoroscopic images of the left shoulder 

were acquired at 30 Hz while the shoulder was manipulated in approximately 150° 

abduction cycle in the coronal plane.  The abduction cycle was performed at 

approximately 25°/s (slow) and 50°/s (fast), taking six and three seconds respectively 

to complete.  Bone models of the scapula and humerus were constructed using an in-

house automated segmentation algorithm from CT scans with a slice thickness of 

0.625mm.  The fluoroscopic image pairs and bone models of the humerus and 

scapula were used to create a virtual dual plane fluoroscopic imaging system 
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(DFIS)45.  Coordinate systems were placed following the guidelines of the ISB (for a 

right shoulder joint complex), however axis definitions were rotated 90° to maintain a 

right-hand coordinate system in the left shoulder joint complex.  The humerus and 

scapula positions were adjusted in six degrees-of-freedom within the virtual system 

until their projections matched the fluoroscopic images captured during dynamic 

abduction motion (Fig 32). 

 
Figure 31 Cadaver rigidly mounted to a custom built fixture allowing the shoulder 
to freely move without obstruction.  DFIS shown in image capture geometry. 
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This procedure was repeated, but using the implanted titanium beads to align the 

scapula and humerus.  The marker based tracking technique was taken as the ‘gold 

standard’ for motion.  Ten percent of the acquired fluoroscopic images were 

analyzed.  Translations and rotations of the model based tracking technique were 

compared to the ‘gold standard’.  Average error and standard deviation are reported. 

 
Results 
 

Good agreement between model and marker based tracking techniques were 

observed (Fig 33, 34).  Similar errors in translation were observed during fast and 

slow abduction speeds for both the scapula and humerus (Table 7).  However, 

scapula and humerus rotation errors were almost double during fast abduction 

compared to slow abduction. 

Figure 32 Virtual DFIS created in computer space from the actual geometry of 
the fluoroscopes shown with 3D model of the scapula and humerus. 
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Discussion 
 

This work presents the translation and rotation errors of tracking the dynamic 

motion of the humerus and scapula using a non-invasive model based tracking 

technique with a dual plane fluoroscopic imaging system.  The observed errors in 

translation and rotation are similar to a validation study of the knee joint using a dual 

X (mm) Y (mm) Z (mm) X° (deg) Y° (deg) Z° (deg)
Humerus 25°/s 0.25 ± 0.23 0.22 ± 0.16 0.21 ± 0.20 0.33 ± 0.29 0.50 ± 0.21 0.41 ± 0.26
Humerus 50°/s 0.22 ± 0.14 0.29 ± 0.23 0.27 ± 0.20 0.84 ± 0.94 0.76 ± 0.72 0.91 ± 0.96
Scapula 25°/s 0.22 ± 0.13 0.34 ± 0.24 0.26 ± 0.16 0.37 ± 0.22 0.29 ± 0.22 0.40 ± 0.27
Scapula 50°/s 0.34 ± 0.18 0.45 ± 0.12 0.13 ± 0.15 0.78 ± 0.53 0.61 ± 0.63 0.64 ± 0.45

 
Table 7 Translation and rotation error observed between model and marker ‘gold 
standard’ based tracking technique for fast and slow abduction speeds in 6DOF: 3 
translations and 3 rotations.  Values are reported as Average ± Standard Deviation. 
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Figure 33 Humerus abduction angle as a function of cycle time.  The humerus abduction 
axis is approximately collinear with the longitudinal axis of the humeral shaft. 
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plane fluoroscopic imaging system69.  Thus, the data from this study suggests that 

non-invasive model based tracking could be used to observe in-vivo 

shoulder joint kinematics with similar accuracy as a marker ‘gold standard’ based 

tracking technique.  This methodology could be useful for measuring the dynamic 

motion of healthy individuals and in patients with instability. 
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Figure 34 Scapula protraction/retraction translation as a function of 
cycle time in approximately the coronal plane. 
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4.3.3 Mini Grant Proposal For Anterior Stability 
 
 
Hypothesis 
 

We hypothesize that contemporary reconstructive surgery for anterior shoulder 

instability does not recreate ‘normal’ contact patterns of the healthy joint, leading to 

development of osteoarthritis. 

 
Background and Aims 
 

The shoulder is the most frequently dislocated joint in the human body.  It has 

the greatest range-of-motion of any joint, but the least intrinsic stability (Fig 35).  The 

muscles of the rotator cuff, fibrous cartilage of the glenoid labrum and ligaments of 

the glenohumeral joint capsule preserve the integrity of the shoulder.  Dislocations of 

the shoulder affect up to 1.7% of the population.  It has been estimated that the 

incidence of all traumatic shoulder dislocations is 11.2 cases per 100,000 persons 

per year.  Approximately 95% of dislocations are anterior; i.e. the translation of the 

humeral head through the glenohumeral joint capsule anterior to the glenoid fossa.  

Adults age 18-25 are the most at risk for anterior dislocation due to sports injury.  

Elderly persons are the second most at risk age population for anterior dislocation 

due to their susceptibility to falls.  Anterior shoulder dislocations usually result from 

excessive abduction, extension and external rotation, causing the humeral head to 

be forced out of the glenohumeral joint capsule, rupturing or detaching the anterior 

capsule from its insertion to the humeral head or from its attachment to the anterior 

edge of the glenoid fossa.  In general, patients complain of excruciating shoulder 

pain, decreased range-of-motion and an overall reduction in their quality-of-life.   
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Surgical reconstruction is often performed in an attempt to restore normal stability 

and decrease pain of the shoulder joint.  However, these surgical procedures are 

known to put patients at significant risk for glenohumeral osteoarthritis, both in the 

early and late postoperative periods.  Early development of postoperative 

osteoarthritis is associated with improper diagnosis of the instability leading to 

inadequate surgical treatment or metallic hardware in the joint, even thought clinical 

stability is restored.  However, the underlying causes for later onset of osteoarthritis 

are unknown.  Severe osteoarthritis of the glenohumeral joint is a disabling condition 

characterized by extreme pain, decreased range-of-motion and overall reduction in 

 

Figure 35 Three dimensional model of the shoulder joint, showing the scapula and humerus bones. 

Parsons 1998 
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quality-of-life.  The surgical treatment for severe osteoarthritis is costly total shoulder 

joint replacement.  The biomechanical factors that affect the onset and development 

of osteoarthritis after surgical correction for shoulder instability are unknown.  

Knowledge of these factors may help delay the development of postoperative 

osteoarthritis after reconstructive surgery for shoulder instability, thus helping to 

reduce the need for revision instability surgery and costly total shoulder joint 

replacements. 

 

Recently, a non-invasive imaging technique for analyzing joint kinematics and 

cartilage contact has been developed at the Bioengineering Laboratory at the 

Massachusetts General Hospital.  The dual plane fluoroscopic imaging system 

(DFIS)45 can accurately measure the in-vivo cartilage contact of the glenohumeral 

joint during daily activities, such as drinking a cup of coffee, throwing a baseball or 

combing ones hair. 

  
Long-Term Aim 
 

The long-term objective of this project is to identify the biomechanical factors 

that lead to the onset and development of postoperative osteoarthritis after the 

surgical treatment for anterior shoulder instability.  Patients that have had anterior 

dislocation and will undergo surgical treatment will be recruited for analysis of their 

glenohumeral articular contact locations using the DFIS.  Preoperative and six 

months postoperative, the patients will be analyzed for articular contact locations of 

the affected joint.  The patient will again be analyzed at one year and two years 

postoperative to observe any changes in glenohumeral articular contact patterns. 
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Short-Term Aim 

The short-term objective of this pilot project is to quantify the glenohumeral 

articular contact locations of the ‘normal’ shoulder joint in twenty healthy volunteers 

using the DFIS.  This information is vital for the further investigation of shoulder joint 

behavior following anterior dislocation and subsequent surgery. 

 
Impact 
 

Shoulder instability significantly decreases the quality-of-life in both the young 

active and elderly populations.  This project would quantify for the first time the 

articular contact locations of the glenohumeral joint.  Quantifying the glenohumeral 

joint articular contact patterns in healthy volunteers and preoperative / postoperative 

anterior instability patients may help to delineate the biomechanical factors that 

influence the development of osteoarthritis after surgical treatment for anterior 

shoulder dislocation.  Knowledge of these factors that promote the onset and 

development of osteoarthritis after surgical intervention for anterior shoulder 

instability could be used to improve contemporary surgical reconstruction techniques.  

Improving surgical treatment for anterior shoulder instability may help minimize or 

delay the onset of osteoarthritis.  By minimizing osteoarthritis of the glenohumeral 

joint, patients would experience a significant decrease in shoulder pain and an 

increase in range-of-motion.  These improvements would reduce the rate of revision 

instability surgery and delay the need for total shoulder joint replacement. 
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4.4 Summary 
 

Total shoulder arthroplasty has become the gold standard for restoring ROM 

and pain relief in degenerative shoulder disease.  However, accurate knowledge of 

in-vivo shoulder kinematics still eludes orthopaedists and researchers.  Accurate in-

vivo kinematics is the foundation for relative motion between bones, contact patterns 

of articular surfaces and boundary conditions for finite element and inverse dynamic 

studies.  These data provide orthopaedists and bioengineers a quantitative 

assessment of normal shoulder motion and the tools which to understand the efficacy 

that various surgical modalities have on restoring shoulder pathologies.  To date, no 

data has been reported on the glenohumeral joint articular contact locations or 

humeral head translations in patients following TSA.  Contact locations in patients 

following TSA could be compared to healthy shoulders to determine if normal contact 

kinematics are restored following surgical reconstruction.  Such contact kinematic 

data are necessary for the improvement of implant designs and surgical implantation 

technique; and ultimately to enhance component longevity.  These data combined 

with humeral head translations provide in-vivo parameters for wear simulators of the 

polyethylene glenoid component and a basis which to compare damage modes of 

failed glenoid components.  Thus, quantitatively measuring in-vivo shoulder 

kinematics would open new doors in the field of shoulder biomechanics.  Therefore, 

the purpose of this research was to investigate the glenohumeral articular contact 

locations and humeral head translations after anatomic TSA during dynamically 

stabilized in-vivo shoulder abduction with neutral, internal and external rotations 

using a novel dual plane fluoroscopic imaging technique. 
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In conclusion, this study examined the glenohumeral joint articular surface 

contact kinematics in patients after anatomic TSA that performed active abduction 

and internal and external rotations of the shoulder.  We demonstrated that in-vivo 

glenohumeral joint contact after TSA was not centered on the glenoid surface, 

suggesting that anatomic TSA kinematics are not governed by ‘ball-in-socket’ 

mechanics as traditionally thought17, 24, 26-28.  Contact locations as a function of arm 

position were variable between patients, although in general, contact was favored on 

the superior-posterior quadrant of the glenoid surface.  These data, when compared 

to normal healthy subjects exhibited similar contact patterns, indicating that anatomic 

sizing and non-conforming component designs might help better recreate normal 

kinematics of the glenohumeral joint following primary anatomic TSA. 
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Appendix A - MATLAB© Files 
 

A.1 circlescentroid.rvb 
 
'------------------------------------------------------------------------------------------ 
'Created: Daniel Massimini 
'Date: July 4, 2006 
'Finds closest distance between concave & convex surface 
 
'------------------------------------------------------------------------------------------ 
 
CirclesToSurface 'Name of Function 
 
Sub CirclesToSurface() 
Const ObjectSurface = 8 '8 is an identifier for Surface 
 
'------------------------------------------------------------------------------------------ 
'Variable Defination & Parameter Specification 
 
Dim HumeralHead, Glenoid, TestPoint(2), UVHumeralHead, UVGlenoid, 
NewPointHumeralHead(2), NewPointGlenoid(2) 
Dim Count, DummyPoint, MasterIndex 
Dim Tolerance, MaxEvaluations, Delta, Index, OldDistance, NewDistance 
Dim ClosePointOnHumeralHead, ClosePointOnGlenoid 
Dim CircleGlenoid, CircleHumeralHead, LengthGlenoid, LengthHumeralHead 
Dim GlenoidCentroid, HumeralHeadCentroid 
 
Tolerance = 0.0000000001 
MaxEvaluations = 500 
LengthGlenoid = 1 
 
'------------------------------------------------------------------------------------------ 
'This Selects the Objects, Humeral Head & Glenoid 
 
HumeralHead = Rhino.GetObject("Please Select the Humeral Head Surface", 
ObjectSurface) 
If Rhino.IsSurface(HumeralHead) Then 
 
Glenoid = Rhino.GetObject("Please Select Glenoid Surface", ObjectSurface) 
If Rhino.IsSurface(Glenoid) Then 
 
'------------------------------------------------------------------------------------------- 
'This Picks Three Test Points on the Glenoid 
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For Count = 0 To 2 Step 1 
 
  TestPoint(Count) = Rhino.GetPointOnSurface(Glenoid, "Please Pick Test Point " 
&Count + 1& " On The Glenoid Surface") 
  Dummypoint = TestPoint(Count) 
  If IsArray(Dummypoint) Then 
   
End If 
Next 
 
'-------------------------------------------------------------------------------------------- 
'Beginning of Real Loop 
 
MasterIndex = 0 
 
While (LengthGlenoid > 0.2 And MasterIndex < MaxEvaluations) 
 
'-------------------------------------------------------------------------------------------- 
'This Finds Closest Point to Test Point 
 
For Count = 0 To 2 Step 1 
 
  UVHumeralHead = Rhino.SurfaceClosestPoint(HumeralHead, TestPoint(Count)) 
  If IsArray(UVHumeralHead) Then 
  NewPointHumeralHead(Count) = Rhino.EvaluateSurface(HumeralHead, 
UVHumeralHead) 
     
  UVGlenoid = Rhino.SurfaceClosestPoint(Glenoid, NewPointHumeralHead(Count)) 
  If IsArray(UVGlenoid) Then 
  NewPointGlenoid(Count) = Rhino.EvaluateSurface(Glenoid, UVGlenoid) 
  
End If 
End If 
Next 
 
'--------------------------------------------------------------------------------------------  
'This Iterates to Find the Closest Distance 
 
For Count = 0 To 2 Step 1 
 
  Delta = 10 * Tolerance 
  Index = 0 
 
  ClosePointOnHumeralHead = NewPointHumeralHead(Count) 
  ClosePointOnGlenoid = NewPointGlenoid(Count) 
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  While(Delta > Tolerance And Index < MaxEvaluations And 
Rhino.IsPointOnSurface(HumeralHead, ClosePointOnHumeralHead) And 
Rhino.IsPointOnSurface(Glenoid, ClosePointOnGlenoid)) 
 
    OldDistance = Rhino.Distance(ClosePointOnHumeralHead, ClosePointOnGlenoid) 
 
    UVHumeralHead = Rhino.SurfaceClosestPoint(HumeralHead, 
ClosePointOnGlenoid) 
    If IsArray(UVHumeralHead) Then 
    ClosePointOnHumeralHead = Rhino.EvaluateSurface(HumeralHead, 
UVHumeralHead) 
 
    UVGlenoid = Rhino.SurfaceClosestPoint(Glenoid, ClosePointOnHumeralHead) 
    If IsArray(UVGlenoid) Then 
    ClosePointOnGlenoid = Rhino.EvaluateSurface(Glenoid, UVGlenoid) 
     
    NewDistance = Rhino.Distance(ClosePointOnHumeralHead, 
ClosePointOnGlenoid) 
 
    Delta = OldDistance - NewDistance 
    Index = Index + 1 
 
End If 
End If 
Wend 
 
NewPointHumeralHead(Count) = ClosePointOnHumeralHead 
NewPointGlenoid(Count) = ClosePointOnGlenoid 
  
Next  
  
'-------------------------------------------------------------------------------------------  
'This Creates Circles on Humeral Head and Glenoid 
 
CircleHumeralHead = 
Rhino.AddCircle3Pt(NewPointHumeralHead(0),NewPointHumeralHead(1),NewPoint
HumeralHead(2)) 
CircleGlenoid = 
Rhino.AddCircle3Pt(NewPointGlenoid(0),NewPointGlenoid(1),NewPointGlenoid(2)) 
 
If Rhino.IsCurve(CircleHumeralHead) Then 
  LengthHumeralHead = Rhino.CurveLength(CircleHumeralHead) 
End If 
 
If Rhino.IsCurve(CircleGlenoid) Then 
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  LengthGlenoid = Rhino.CurveLength(CircleGlenoid) 
End If 
 
'------------------------------------------------------------------------------------------- 
'This Reassigns Variables 
 
For Count = 0 To 2 Step 1 
 
  TestPoint(Count) = NewPointGlenoid(Count) 
  Dummypoint = TestPoint(Count) 
  If IsArray(Dummypoint) Then 
  'Rhino.AddPoint TestPoint(Count) 
 
End If 
Next 
 
'------------------------------------------------------------------------------------------- 
 
MasterIndex = MasterIndex + 1 
 
Wend 
 
'End of Loop 
'------------------------------------------------------------------------------------------- 
 
If Rhino.IsCurve(CircleGlenoid) Then 
  GlenoidCentroid = Rhino.CurveAreaCentroid(CircleGlenoid) 
Rhino.AddPoint GlenoidCentroid(0) 
 
If Rhino.IsCurve(CircleHumeralHead) Then 
  HumeralHeadCentroid = Rhino.CurveAreaCentroid(CircleHumeralHead) 
Rhino.AddPoint HumeralHeadCentroid(0) 
 
NewDistance = Rhino.Distance(GlenoidCentroid(0), HumeralHeadCentroid(0)) 
Rhino.Print "Distance Between Centroids Is: " & CStr(NewDistance)  
 
End If 
End If 
 
Rhino.Print "I Have Completed " & CStr(MasterIndex) & " Iterations!" 
 
End If 
End If 
 
End Sub 
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A.2 surfacetocurve.rvb 
 
'------------------------------------------------------------------------------------------ 
'Created: Daniel Massimini 
'Date: July 5, 2006 
'Creates curve of surface edge 
 
'May need to modify resulting curves, either removing duplicates or joining sections 
 
'------------------------------------------------------------------------------------------ 
 
SurfaceToCurve 
 
Sub SurfaceToCurve() 
 
Dim Surface 
 
Surface = Rhino.GetObject("Select surface or polysurface (Glenoid Surface)", 24) 
 
If Not IsNull(Surface) Then 
 
Rhino.DuplicateEdgeCurves Surface, True 
 
End If 
 
End Sub 
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A.3 edgetosurface.rvb 
 
'------------------------------------------------------------------------------------------ 
'Created: Daniel Massimini 
'Date: July 5, 2006 
'Finds closest distance between curve and surface 
 
'******************************WARNING***************************************************** 
 
'This script assumes you have a curve of the edge (glenoid) of the surface you want 
to test. 
'First run surfacetocurve.rvb to create curve, modify and join appropiately. 
 
'------------------------------------------------------------------------------------------ 
 
EdgeToSurface 
 
Sub EdgeToSurface() 
'----------------------------------------------------------- 
Dim HumeralHead, Glenoid, Curve, ArrayPoints, ArrayPoint, UVHumeralHead, 
TempPoint 
Dim ShortPoint, OldDistance, NewDistance 
 
HumeralHead = Rhino.GetObject("Please Select the Humeral Head Surface", 8) 
If Rhino.IsSurface(HumeralHead) Then 
 
Curve = Rhino.GetObject("Select Curve To Measure Closest Point", 4) 
If Rhino.IsCurve(Curve) Then 
 
ArrayPoints = Rhino.DivideCurve(Curve, 10000) 'Number of Points 
 
'----------------------------------------------------------------------------- 
UVHumeralHead = Rhino.SurfaceClosestPoint(HumeralHead, ArrayPoints(0)) 
If IsArray(UVHumeralHead) Then 
TempPoint = Rhino.EvaluateSurface(HumeralHead, UVHumeralHead) 
     
OldDistance = Rhino.Distance(TempPoint, ArrayPoints(0)) 
 
'----------------------------------------------------------------------------- 
 
For Each ArrayPoint In ArrayPoints 
   
   
  UVHumeralHead = Rhino.SurfaceClosestPoint(HumeralHead, ArrayPoint) 
  If IsArray(UVHumeralHead) Then 
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  TempPoint = Rhino.EvaluateSurface(HumeralHead, UVHumeralHead) 
   
  NewDistance = Rhino.Distance(TempPoint, ArrayPoint) 
   
  If (NewDistance < OldDistance) Then 
    ShortPoint = ArrayPoint 
    OldDistance = NewDistance 
  End If 
   
  End If 
    
Next 
'----------------------------------------------------------------------------   
 
 
UVHumeralHead = Rhino.SurfaceClosestPoint(HumeralHead, ShortPoint) 
If IsArray(UVHumeralHead) Then 
TempPoint = Rhino.EvaluateSurface(HumeralHead, UVHumeralHead) 
Rhino.AddPoint ShortPoint 
Rhino.AddPoint TempPoint 
NewDistance = Rhino.Distance(TempPoint, ShortPoint) 
Rhino.Print "Distance Between Points Is: " & CStr(NewDistance)  
 
 
End If 
End If 
End If 
End If 
End Sub 
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