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Abstract
Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage
tissue engineering shows promise as a viable technique to treat focal defects. Added functionality
can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time
diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral
condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied
to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess
joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine
joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures.
A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a
comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold
implantation did not significantly alter joint pressures. Future studies could possibly use strain-
gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging
to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the
development of a functional engineered cartilage tissue substitute as well as provide insight into the
native environment of cartilage.
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INTRODUCTION
Articular cartilage has a poor healing response because it lacks resident pluripotent cells and
is avascular. Failure to resolve tissue injury weakens the structural integrity of the cartilage,
leading to progressive deterioration of surrounding cartilage. As such, even minor lesions can
lead to wide-spread joint degeneration and osteoarthritis.1 Development of surgical procedures
to repair focal defects is critical to the maintenance of healthy joints. A number of techniques
have been developed to aid the reparative process; however, all have notable limitations.
Autologous tissue transplants2–4 can cause donor site morbidity,5,6 and autologous cell
transplant procedures7,8 often result in poor cell attachment, leading to incomplete healing9–
11 and fibro-cartilage tissue formation.

There has been a recent interest in the development of biodegradable scaffolds to support
implantable tissues grown in vitro.12 These scaffolds have been created from a wide variety
of materials,12–19 including polylactic acid, silk protein, polyester, and polybutylene
terephthalate. The use of polymer scaffolds in tissue engineering offers many advantages.
Nutrients and growth factors20–24 can be incorporated into scaffold structures to continuously
deliver necessary supplements to newly formed musculoskeletal tissues, encouraging rapid
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development and integration into existing tissues. Scaffolds can be created in a variety of
geometric configurations to allow implantation of engineered tissues that are tailored to fit an
array of focal defect shapes.25 Growing cartilage on scaffolds in vitro provides a more
complete development of the tissue prior to implantation.26,27 Bone readily grows into
implantable scaffolds,28–30 providing secure long-term attachment of engineered tissues to
the surrounding tissues in the implant site. Additionally, osteoconductive coatings can be
applied to scaffolds to accelerate bone ingrowth.30,31

To develop functional tissue-engineered cartilage, a thorough understanding of loads acting
on cartilage is essential. By adding strain sensors to scaffolds used in tissue engineering, a
complete in vivo tissue loading history can be recorded through real time monitoring of joint
forces. Insights into cartilage mechanics, pluripotent cartilage pre-cursor cell triggers, and local
material properties can be discovered from these measurements. Moreover, development of a
technique that provides continuous in vivo measurements and data acquisition will make
available clinically relevant diagnostic measurements during surgery and rehabilitation.1,32
In addition, implanted sensors and data acquisition systems can be configured to generate
warning signals in order to prevent joint overload.33 This can help patients prevent damage to
tissue-engineered cartilage during daily activities in the postsurgical healing period.

Adding sensors to a rapidly evolving scaffold design will also provide insight into the next
essential step in the development of scaffolds and functional tissue by making supplementary
cartilage loading information available to guide future research and development. Strain gauges
have been successfully used as in vivo load sensors by attaching them directly to bone in animals
and patients.34–37 Recently, strain sensors have been attached to implantable scaffolds to
collect joint load measurements. The preliminary results of those studies suggest that strain
gauges attached to scaffolds could be used to monitor the in vivo changes of joint loads during
gait in a canine model.38

The goal of this study was to measure joint loads during benchtop testing using gauges attached
to implantable scaffolds and to determine whether they can be used to accurately and
reproducibly infer joint loads and pressures. An additional aim was to evaluate the effect of
implanted scaffolds on stifle joint mechanics by examining surface pressure patterns near
scaffolds with pressure sensitive films. Although canine patellofemoral surface pressures have
been measured,39–44 very little information about tibia–femoral joint pressure is currently
available.

METHODS
Overall Approach

The carcasses of five adult mongrels were obtained according to an IACUC approved protocol.
Both hind limbs from each dog were explanted and the stifle joints were excised, leaving the
capsules and soft tissues intact. Additionally, the hind limbs of nine hounds, that had been part
of a recently completed in vivo study to evaluate bone ingrowth into implanted polybutylene
terephthalate (PBT) scaffolds and PBT scaffold biocompatibility, were obtained and explanted
in a similar manner. Strain measurements were not taken from the in vivo test animals. All
isolated joints were loaded using the same procedure with an MTS servo-hydraulic test machine
(Materials Testing System, Minneapolis, MN) while strain gauges attached to the PBT
scaffolds and pressure sensitive film were used to assess joint loading.

PBT Scaffold
A three-dimensional (3D) porous PBT scaffold design was created on a CAD program
(SolidWorks, Concord, MA) using a previously reported method.45 Cylindrical scaffolds (9.5
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mm diameter) had a domed top, where the radius of curvature (8 mm) of the flattened dome
was chosen to approximate the curvature of the medial femoral condyle [Figure 1(A)]. Three
sets of holes (0.5 mm diameter, 1 mm depth) spaced 120° apart were placed perpendicular to
the scaffold’s long axis to facilitate bone ingrowth through the sides of the scaffold [Figure 1
(A)]. Equidistant cutouts were placed around the base of the scaffold to accommodate strain
gauge wiring [Figure 1(B)]. The interior of the scaffold was prepared so that it was porous
through the base to encourage bone ingrowth and solid at the dome to support a tissue-
engineered cartilage layer (Figure 1). A strand of polymer surrounded the exterior to transfer
load to the strain gauges. Once completed, the 3D model was exported in a stereolithography
format and uploaded into QuickSlice (Microsoft, Redmond, WA), the processing software for
the Stratasys FDM 1650 fused deposition modeler (Stratasys, Eden Prairie, MN). Scaffolds
were made with solid layers between the cylindrical portion and dome [Figure 1(C)]. This
design was chosen to prevent vascular invasion of the dome, where the tissue-engineered
cartilage layer would ultimately be grown in future experiments.

Gauge Attachment and Coating
Three 1000-Ω strain gauges (EA-06-125BT-120 Measurements Group, Raleigh, NC) were
aligned along the long axis of the scaffold and attached with masterbond, an implantable grade
of epoxy (EP42HT, Master Bond, Hackensack, NJ), around the circumference of each 9-mm
cylindrical PBT porous scaffold (Figure 2). The gauge wires were positioned in slots located
at the base of the scaffold, which prevented the wires from interfering with scaffold placement
during implantation while providing sufficient porosity for bone ingrowth. The epoxy, used
for gauge attachment, was cured for 24 h and each scaffold was tested for functionality and
calibrated.

During the calibration process each scaffold was placed into a polyurethane foam holder. These
foam constructs have previously been reported to have a compressive modulus similar to that
of trabecular bone.46 In each case, the foam holder and scaffold were compressed between the
MTS loading plate and a layer of silicone at load rates of 50, 100, 150, and 200 N/s at peak
loads up to 150 N. Scaffolds were loaded and then rotated 90° relative to the scaffold’s long
axis before being tested again to determine the effect of scaffold orientation in the foam. Strain
measurements were recorded during both compression and relaxation. Loads from the MTS
load cell and strains were measured simultaneously and load versus strain curves were plotted
for each gauge. A calibration equation was determined for each scaffold, based on the load
versus strain plots, in the form of the linear equation: L = m × S + b, where L is the load in
newtons, m the linear best fit slope, S the strain in microstrain, and b the calibration offset. To
determine the influence that support structure stiffness had on the calibration relations, silicone
structures of three different stiffnesses were tested.

Scaffold Placement
In both surgery and benchtop scaffold placement, a guide bit was drilled into the face of the
medial condyle. The bit passed through the mid-diaphysis of the lateral aspect of the femur to
allow the cable from the scaffold to exit at this location. A 9-mm reamer was used to ream into
the face of the condyle to the depth of the height of the scaffold (2 cm). The reamer and guide
bit were removed, leaving a space for the scaffold and a hole to guide the gauge wires through
the condyle to the lateral aspect of the femur. The wires were passed through the guide bit hole
and the scaffold was seated into the medial condyle, leaving the dome of the scaffold flush
with the articulating surface38 (Figure 3). To allow sufficient bone ingrowth, scaffolds from
the in vivo study were left in place for ~6 months prior to the killing of the animals and removal
of their limbs for testing.
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Joint Preparation
Each limb was cut just distal to the femoral neck and proximal to the hock, leaving ~75% of
the tibia. Holes were drilled transversely through both cut bone ends, which allowed a gauge
wire (no. 14) to be threaded through the bone, preventing loosening of the bone once it was
mounted on the MTS. The bone ends were fixed in 5-cm sections of copper tubing (2.5 cm
diameter) using quicksetting epoxy (Devcon, Danvers, MA). The copper tubing was then
attached securely to a loading fixture (Figure 4) connected to the MTS.

After attaching the stifle joints to the loading fixture, the posterior portion of both right and
left joint capsules were incised and the collateral ligaments were severed. The cruciate
ligaments and the patellar tendon were left intact and the proximal portion of the patellar tendon
was attached to a 5-N weight. The bones of five mongrels received scaffolds on the benchtop.
The nine sets of hound bones from the in vivo study had received scaffolds during sterile surgery
using a similar procedure. Left knees of both groups did not receive scaffolds and were used
as controls.

Joint Loading
Loads up to 130 N were applied to joints at load rates of 50, 100, 150, and 200 N/s. Loading
was carried out with joints at 30°, 50°, and 70° flexion to simulate paw strike, stance, and toe
off during gait47 (Figure 5). At each flexion angle, pressure sensitive impressions were taken,
scanned, and analyzed five times. Loads and strains were recorded at 100 samples/s and saved
to a spreadsheet. Low-pressure high-sensitivity films (Super Low Film two sheet type,
Pressurex Film, Hanover, NJ) were cut into 2.5 × 5 cm2 strips. The films were connected with
transparent tape to form a two-part film packet that did not allow fluid infiltration. Film packets
were placed into both medial and lateral compartments of the joint before being loaded. Three
sets of mongrel joints were tested with pressure sensitive film before and after placing the
scaffold. In one other mongrel, one scaffold was placed slightly protruding from the femoral
surface in order to determine the effect of inadequately seated scaffolds on peak surface
pressure in the joint. In the remaining two sets of mongrel joints, scaffolds were placed, tested,
and then rotated with respect to the long axis in order to change the orientation of the scaffolds
in the drill hole of the femoral condyle.

Data Analysis
Pressure sensitive films were scanned using a LaCie Silver-scanner II at 400 dpi and imported
into ImageJ 1.4.2v software (NIH, Bethesda, MD. Artifacts, which were visually identified as
marks located outside of the area of the outer perimeter of the menisci, were removed from the
scanned images. Marks that were straight lines found on pressure films were considered to be
crinkle artifacts and were also removed. Images were converted and scaled to a range of 0–
255 (0 = white, 255 = black). Peak pressures were determined by applying pixel density
conversion algorithms derived from calibration graphs provided by Pressurex® pressure
sensitive films. Strain measurements from strain-gauged scaffolds were converted to loads
using scaffold calibration coefficients determined during the calibration loading procedure.
For all the analyses a nonparametric Kendall’s W test, equivalent to a dependent t test, was
used to determine significance at a p value of 0.05.

RESULTS
Strain-Gauged Scaffold Calibration

Strain versus load curves for gauged scaffolds were consistently linear throughout the range
of loads applied during the calibration process (Figure 6). Within physiological loading rates,
47 changes in calibrations were insignificant (Kendall’s W: p = 0.495) (Table I). Changing
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scaffold orientation provided an insignificant change in the linear coefficients of the load/strain
calibration relations (Kendall’s W: p = 0.146), and an insignificant change was noted when
silicone layers of different elastic moduli were used in the calibration process (Kendall’s W:
p = 0.779) (Table I). However, a significant variation of coefficients was apparent when
comparing calibration relation equations from one strain-gauged scaffold with those from the
next.

Pressure Sensitive Film
Similar maximum contact surface pressures, measured using pressure sensitive film, were
obtained before and after scaffold placement (Figure 7). On the joint surface of the nine hounds,
peak pressures at 30° of flexion ranged from 0.91 to 2.36 MPa on the medial surface and 0.86
to 2.43 MPa on the lateral surface (Table II). At 50° of flexion, the medial surface pressures
ranged from 0.97 to 2.43 MPa, whereas the lateral surface pressures ranged from 0.85 to 2.02
MPa (Table II). Peak pressures at 70° of flexion ranged from 1.01 to 2.53 MPa on the medial
surface and 1.07 to 2.29 MPa on the lateral surface (Table II). Figure 8 shows the peak pressures
from the medial surface of all joints at 30° of flexion. Thirty degrees of flexion is of particular
interest because the condyle area containing the implanted scaffold is most directly loaded and
at this angle load transmission is most closely aligned along the axis of loading of the strain
gauges. Changes in peak pressures between control and test knees were nonsignificant (p =
0.452).

Markedly increased maximum surface pressures were detected using pressure sensitive films
in the mongrel stifle joint where the scaffold was placed relatively proud to the condyle surface
(Figure 9).

Strain-Gauged Scaffold Measurements
Strain measurements were consistently and repeatedly acquired from all strain-gauged
scaffolds during compression loading of the stifles. Loads as small as 2.5 N, applied to the
joints, produced detectable changes in measured strains corresponding to the change in applied
loads. Both cyclic and sustained loads were reliably monitored through the strain-gauged
scaffold systems. Scaffold orientation did affect gauge reading consistency in implanted
scaffolds. In one scaffold at the initial placement orientation, all three gauges inferred similar
loads (39.72 ± 1.17 N) based on strain measurements, yielding a coefficient of variance of
2.95%. When the scaffold was tested and then rotated 90°, inferred loads yielded a coefficient
of variance of 12.67% (15.03 ± 1.90 N).

DISCUSSION
This study demonstrated that strain measurements from gauged scaffolds reliably correspond
to applied loads acting on the femoral condyles in both magnitude and duration. It also
established normal surface pressures on the canine tibia–femoral joint and the nominal effect
of scaffold placement on stifle joint pressures. Throughout the duration of the study, individual
scaffold calibrations proved to be consistent. This consistent linear calibration relationship
between load and strain insured a simple interpretation of measurements collected within the
physiological load range. The variance of calibration coefficients from one strain-gauged
scaffold to the next can be attributed to the distinct characteristics of each gauge and the slight
variations in material properties of the PBT composite in each scaffold. This difference of
coefficients can be accounted for by individual scaffold calibrations and applying those
calibrations to strain measurements of that particular scaffold to infer load transmission through
the scaffold.
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Innate to any cartilage repair procedure is the risk of altering joint mechanics, leading to damage
of the surrounding native tissue. A meniscectomy, for example, reduces joint contact area
surface, causing dramatic increases in peak contact stress.48–51 The increased surface pressure
has frequently led to the premature development of osteoarthritis.52–54 Recently, implants
used in meniscal repair procedures have led to significant increases in peak joint pressures,
initiating femoral cartilage damage.43 Pressure sensitive films have been widely used in joint
mechanic experiments to analyze surface stress55–61 and were used in this study to validate
the normal pressures of the knee joint as well as determining the effects of scaffold
implantation. Contact joint pressures measured in this study were comparable to those
previously reported.62,63 A comparison of joint pressures, with and without scaffold
placement, indicated that the scaffold placement procedure did not significantly alter contact
pressures. The lower pressures measured in both medial and lateral condyles of the
experimental joint of specimen C7 (0.67 MPa and 0.52 MPa), when compared with those of
the control, may be attributed to disparities of the stifle joints of the test animal.64 It is also
possible that the scaffold was improperly placed, slightly altering the mechanics of the knee
and reducing the peak load on the medial surface. Although care was taken to select animals
of similar size and breed, the variability of pressures noted when comparing the results of one
test animal with those of another may be attributed to the minor anatomical differences of the
test animals.

Additional concerns about the impact of the implanted scaffold would need to be addressed
before proceeding to clinical trials. One major concern would be the effect of the engineered
tissue articulating against the healthy tibial plateau and meniscus. Although the scaffolds
placed in the in vivo trials did not have the tissue engineered cartilage layer to be placed in
future trials, when the scaffolds were accurately placed no gross evidence of cartilage surface
damage on either the tibial or meniscal surface could be seen when examined with a
stereomicroscope. Currently, examination of the cartilage surface to detect subsurface damage
using optical coherence tomography, SEM, and hard tissue histology staining techniques are
being developed. These techniques will also be used to compare the native tissues with the
engineered tissue layer. Another major concern of implant procedures is the occurrence of
infection due to the implantation of the scaffolds, strain gauges, or wires. As reported,38 none
of the in vivo test animals that received scaffolds showed signs of synovitis or infection at any
of the sites involved in the surgical placement of wires or scaffolds. This is consistent with
previously published work looking at the effect of implanted strain gauges,35–37 cables,35
and radio transmitters.32

Throughout the study strain measurement fidelity was found to be greatest at 30° of flexion,
which corresponds to push off during gait. This was likely due to the design and orientation
of the strain gauges on the scaffolds. Strain gauges used in this study were limited to sensing
along a single axis, and the implanted gauges were most closely aligned with the 30° flexion
angle. Although beyond the scope of this study, future benchtop development may benefit from
the use of multiple gauges oriented along various axes to allow strain sensing in three
dimensions. This would allow measurements over a broader range of angles and may facilitate
tangential shear detection.

The reproducibility of the strain measurements and ease of load analysis from the strain-gauged
scaffolds make this system ideal for consideration in an in vivo model. The 2.5-N sensitivity
calculated in this study is more than adequate for joint load measurement. During in vivo
experiments, bone growth into scaffold pores will fix scaffolds securely in place. Once fixed
in place, loads on condyles may more fastidiously compress the scaffold, resulting in a higher
strain measurement accuracy. Evaluation of these in vivo effects was beyond the scope of this
study. However, this situation could potentially be modeled by cementing scaffolds in place
in a benchtop experiment or conversely by monitoring scaffolds in vivo over extended periods
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while bone ingrowth occurs. The PBT material used to create the scaffolds used in this study
is marginally degradable. Preliminary results of a degradation study65 indicate that PBT
scaffolds do not begin to lose their mechanical properties for at least 1 year in vivo. This will
provide the engineered cartilage substantial time to heal and integrate with the surrounding
tissue.

Results from this study imply that a strain-gauged scaffold measurement system has the
attributes necessary for animal studies and eventually clinical trials because of the uniformity
of calibration relationships at load rates within the physiological range. This further indicates
that strain-gauged scaffolds can be used to collect measurements in test animals and in patients
when they are standing, walking, and running. The consistency of measurements to cyclic and
sustained loads suggests that this measurement system is robust and can generally be applied
to studies in animals or patients. Material properties of joints can vary within a patient
population or within an individual joint depending on location.66–69 Scaffold calibration
relations remained consistent over a range of silicone stiffness, suggesting that calibration
algorithms will accurately measure loads in a wide range of locations in test animals and
patients.

Measurements collected in vivo may have both clinical and experimental relevance. Currently
no measurements exist that show cartilage loading during various impact generating activities
such as kneeling, stair climbing, and jumping. These measurements will help determine native
cartilage tissue environments and can provide standards for both peak loads and loading rates
in the testing of engineered cartilage products. Once the native cartilage loads have been
established, monitoring of joint loads can aid rehabilitation by warning patients of joint
overloading. Additionally, clinical practitioners could use real time measurements to guide
rehabilitation. An understanding of healthy cartilage loading can provide key insights to
investigators trying to establish the relationship between mechanical loads and chondrocyte
functionality. A better understanding of loading regimens during various activities may help
cartilage biologists determine activation loads that lead to a positive chondrocyte response.

CONCLUSIONS
The novel scaffold system tested in this study gives rise to a new dimension of scaffold-based
cartilage engineering by adding a diagnostic element. Scaffold calibrations relating strain and
applied loads were consistent and repeatable, allowing the scaffolds to reliably detect load
transmission in the knee. Pressure sensitive film analysis was used to determine joint pressures
and indicated that the scaffold itself did not influence the peak contact pressures on the joint.

Real-time monitoring of joint loading has the potential to provide important clinical and
diagnostic information such as a complete joint loading history during the postsurgery period.
It also has the potential to add fundamental insights into the native environment of the knee
joint. Clinical studies may possibly use strain-gauged scaffolds to establish normal joint loads
and to determine loads that are damaging to both healthy and tissue-engineered cartilage. This
could aid physicians in determining appropriate knee therapies and will be paramount in the
development of a functional engineered cartilage tissue.
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Figure 1.
A: Side view of a cylindrical PBT scaffold showing two holes designed for bone ingrowth. B:
Bottom view of scaffold showing scaffold porosity and three cutouts for strain gauges. C:
Sectional slices showing scaffold porosity throughout the scaffold layers and the solid layer in
the top section to prevent vascular invasion of the tissue-engineered cartilage layer. D: Top
view of scaffold showing the porous section where the tissue-engineered cartilage layer would
be placed. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 2.
Side view of a strain-gauged scaffold showing the face of one of three strain gauges. The thin
polyamide backing of the remaining two gauges can be seen on either side of the scaffold.
Arrows indicate the direction of expected bone ingrowth on the top and sides of the cylindrical
scaffold. The tissue-engineered cartilage layer would be grown onto the dome at the bottom
of the scaffold. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 3.
Representative anterior/posterior (Left) and lateral (Right) radiographs of an implanted
scaffold. Scaffold is placed in the medial femoral condyle flush with the articulating surface.
Wires from the strain gauges attached to the scaffold pass through the bone and exit at the
lateral aspect of the femur.
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Figure 4.
Left: Intact canine stifle mounted into copper tubing and fixed into the MTS harness fixture.
This fixture allows 30°, 50°, and 70° flexion of the joint during loading. Right: Posterior view
of canine stifle with joint space exposed for pressure film placement. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 5.
Flexion angles were measured between the femur and the tibia. During the paw strike, the
femur and tibia roughly form a 70° angle, whereas stance occurs at 50° flexion and toe-off
(push-off) at 30°. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Figure 6.
A typical scaffold calibration curve showing linear relationship between load and strain. In the
accompanying calibration equation, L indicates the load and S, the strain.
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Figure 7.
Comparison of peak surface pressures measured before and after placement of a strain-gauged
scaffold in one mongrel’s joint.
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Figure 8.
Contact surface pressure measured from the medial joint surface in both right and left knees
at 30° flexion.
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Figure 9.
Comparison of peak surface pressures measured before and after scaffold placement in one
mongrel’s joint. In this experiment, the scaffold was placed protruding from the surrounding
cartilage layer.
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TABLE I
Calibration Equation Comparison of Load Rates,a Orientation,b and Silicone Modulic

Gauge 1 Gauge 2 Gauge 3

Load rate (N/S)
 100 L = 0.0172 S L = 0.0202 S L = 0.0196 S
 10 L = 0.0169 S L = 0.0188 S L = 0.0195 S
 5 L = 0.0177 S L = 0.0189 S L = 0.0195 S
Orientation
 0° L = 0.0091 S L = 0.0052 S L = 0.0049 S
 90° L = 0.0091 S L = 0.0055 S L = 0.0045 S
Silicone
 A L = 0.0181 S L = 0.0141 S L = 0.0212 S
 B L = 0.0242 S L = 0.0156 S L = 0.0222 S
 C L = 0.0169 S L = 0.0188 S L = 0.0195 S

a
Each scaffold has an individual calibration equation. The calibration coefficients for one scaffold at various loads rates. Silicone layer used: Silicone C.

b
The values are those noted when a scaffold was calibrated, then rotated 90° and calibrated again.

c
The calibration equations for one scaffold as the silicone layer used in the calibration process was varied.
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TABLE II
Comparison of Peak Surface Pressures Measured in the Knee Joint in Which the Scaffold Was Placed
(Experimental) and the Contralateral Joint Which Received No Scaffold (Control) of Each Test Animal at Three
Different Flexion Angles

Medial Pressure (MP ± SD) Lateral Pressure (MP ± SD)

Canine Experiment Control Experiment Control

At 30° flexion
 C1 1.68 ± 0.04 1.55 ± 0.06 1.64 ± 0.14 0.92 ± 0.06
 C2 1.83 ± 0.12 2.26 ± 0.04 1.98 ± 0.05 1.22 ± 0.05
 C3 1.72 ± 0.13 1.72 ± 0.07 1.75 ± 0.19 1.39 ± 0.13
 C4 1.63 ± 0.03 1.79 ± 0.17 1.60 ± 0.01 0.86 ± 0.07
 C5 2.36 ± 0.10 2.06 ± 0.14 1.34 ± 0.09 2.34 ± 0.05
 C6 1.06 ± 0.05 0.95 ± 0.07 1.63 ± 0.07 2.32 ± 0.04
 C7 0.91 ± 0.05 1.58 ± 0.10 1.36 ± 0.13 1.88 ± 0.09
 C8 1.25 ± 0.08 1.42 ± 0.16 1.29 ± 0.10 1.88 ± 0.13
 C9 1.45 ± 0.08 1.33 ± 0.01 1.49 ± 0.03 1.57 ± 0.08
At 50° flexion
 C1 1.43 ± 0.13 1.94 ± 0.08 1.80 ± 0.14 1.23 ± 0.07
 C2 1.43 ± 0.07 2.11 ± 0.06 2.02 ± 0.03 0.85 ± 0.09
 C3 1.15 ± 0.11 1.67 ± 0.13 1.47 ± 0.06 1.13 ± 0.10
 C4 1.12 ± 0.05 1.80 ± 0.04 1.75 ± 0.07 1.04 ± 0.09
 C5 2.43 ± 0.10 2.11 ± 0.07 1.54 ± 0.17 1.82 ± 0.05
 C6 1.19 ± 0.01 1.08 ± 0.07 1.93 ± 0.03 1.95 ± 0.06
 C7 1.77 ± 0.05 1.52 ± 0.09 1.77 ± 0.08 1.80 ± 0.06
 C8 0.97 ± 0.10 1.54 ± 0.10 0.97 ± 0.08 1.26 ± 0.04
 C9 1.58 ± 0.12 1.10 ± 0.05 1.58 ± 0.05 1.59 ± 0.03
At 70° flexion
 C1 1.37 ± 0.08 2.03 ± 0.04 2.29 ± 0.20 1.18 ± 0.10
 C2 1.74 ± 0.16 1.88 ± 0.21 1.73 ± 0.07 1.18 ± 0.26
 C3 1.01 ± 0.10 1.64 ± 0.14 1.54 ± 0.12 1.12 ± 0.07
 C4 1.35 ± 0.06 1.71 ± 0.02 1.61 ± 0.09 1.07 ± 0.09
 C5 2.53 ± 0.12 2.11 ± 0.06 1.52 ± 0.13 1.33 ± 0.08
 C6 1.41 ± 0.14 1.25 ± 0.09 1.77 ± 0.04 1.79 ± 0.03
 C7 1.30 ± 0.14 1.52 ± 0.21 2.00 ± 0.04 1.72 ± 0.06
 C8 1.49 ± 0.14 1.43 ± 0.07 1.57 ± 0.15 1.16 ± 0.04
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