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Summary

The modern game of tennis has changed in recent years as a result of lightweight, stiffer
racquets. The evolution of the tennis racquet, with respect to both design and materials,
has increased the speed of the game but also the levels of stress placed on the player’s
bodies. Larger racquet heads generate greater top spin on the ball, allowing the player to
strike the ball harder and still be able to place the ball in court. However, by striking the
ball harder the strains on the player’s upper extremities caused by the transmission of
ball-racquet impact energy are increased. Injuries such as lateral epicondylitis (tennis
elbow) are thought to be both instigated and aggravated by the transfer of racquet shock
and vibration. Therefore, it is important to manage the levels of shock and vibration
transmission to the player, in order to reduce the associated performance inhibiting

effects.

Racquet energy that causes upper extremity injuries is transferred to the tennis player via
the tennis grip in the form of shock and vibration. Parameters defining the degree of
shock and vibration transmission are the inherent properties of the racquet and the
mechanics of the tennis grip. This thesis presents an experimental investigation into the
transmission of racquet vibration to the player's hand and forearm. Experimental
techniques have been used to quantify the main parameters defining the transmission of

vibration viathe tennis grip.

The mechanics of grip damping show precisely how the transfer of racquet vibration to
the player occurs. The tennis grip has been experimentally quantified using various

sensing equipment. Gripping devices used in previous research have been modified,

1



manufactured and used in conjunction with pressure sensitive film and hydrocell sensors.
Each of the experimental techniques used in this research has been designed to examine
different aspects of the tennis grip. Manufactured strain gauge cantilever systems have
been utilised for a real-time analysis of the grip tightness variations during impact. The
cantilever technigque enabled estimations of anticipation times, allowing for a description
of the tennis grip regarding the time of maximum grip force and the initial increase in
grip force with respect to the time of impact. Specialised pressure sensitive film has also
been utilised to identify important contact locations within the tennis grip where the
magnitudes of pressure are greatest. These two primary laboratory tests provided
information for further experiments, allowing for the analysis of grip pressure distribution

during different stroke types using real-time data acquisition.

Variations in the distribution of grip pressure during impact for three stroke types have
been measured by attaching hydrocell pressure sensors to the racquet handle at multiple
contact locations. Calculated pressure distributions show the magnitudes of gripping
pressure at multiple contact locations in the tennis grip. These pressure distribution
characteristics have been used to analyse the applied gripping pressure of the player's
hand together with the reactions force imparted on the player's hand, generated by

racquet rotation during impact.

Correlations between racquet vibrations and grip pressure distribution could only be
made if the degree to which the vibrations are dampened could be quantified. The half-
power bandwidth method (Quality factor) has been applied to estimate the magnitude of

racquet damping in the frequency domain. Racquet damping estimations have been



correlated with the grip pressure characteristics to show the mechanics of the grip
damping phenomena. Estimates of logarithmic decrement have been utilised to relate
variations in grip pressure distribution to the damping of racquet vibrations. Using the
modal properties of the racquet (also established in this thesis) the mechanics by which

the tennis grip absorbs racquet vibrations, have been described.

Previous research has shown the hand to have a profound effect on the dynamic response
of the tennis racquet in terms of frame vibration damping. It has been shown that the
tighter atennis grip, the greater the level of vibrations transferred to the player’ s hand and
forearm. This research has investigated the grip damping phenomena and built upon the
current body of knowledge by interpreting the mechanics of grip damping, showing
precisely how the tennis grip dampens tennis racquet frame vibrations, and how they are
absorbed by the player at contact locations on the hand. Future racquet designs can now
incorporate the findings of the present research to optimise the vibration attenuation
systems (whether they are passive or active) to aid in the management of upper extremity

injuries such as lateral epicondylitis.
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| ntr oduction



Over recent years the dramatic evolution of tennis racquet design has lead to an increase
in game speed that has resulted in increased physical forces being imparted on the player.
These increased forces are thought to have given rise to increases in the development and
aggravation of injuries. The most common injuries are those that involve the player's
upper extremities, and are believed to come primarily as a result of the forces transmitted
to the player during racquet - ball impact. The most common injury resulting from such
impact forces is lateral epicondylitis (tennis elbow). Tennis elbow is not the only upper
extremity injury encountered by players, but with tennis elbow affecting 40-50% of
recreational players (Roberts et al. 1995; Nirschl 1986), the injury inhibits player
performance on a large scale. Recent surveys have shown that 55.6% of recreational
players occasionally suffer from symptoms of tennis elbow, and 42.2% of those injured
said that tennis elbow reduced the amount of tennis they played (Sports Marketing

Surveys 2003). The management of tennis elbow is therefore in high demand.

Although tennis elbow represents an acute problem for many players across the world,
additional upper extremity injuries, such as wrist and shoulder strains, also affect the
players. Upper extremity injuries are thought stem from the transfer of large impact
forces in a repetitive manner, to the player via the racquet-hand interface known as the
tennis grip. Injuries, such as tennis elbow, can be better managed only if the causes can
be better understood. This in turn means that the transmission of racquet forces to the

player needs to be better understood.

The impact forces transmitted to the player are in the form of impact shock and post-

impact racquet vibrations. However, the degree of racquet shock and vibration



transmission is determined by a number of contributing factors. Specific stroke types,
such as the backhand, allow for a greater degree of energy transfer to the player as they
biomechanically isolate the susceptible forearm tendons during the stroke. Backhand
strokes require the use of wrist extensors that develop the symptoms of tennis elbow if
they are overused or placed under great strain. The large strain on the wrist extensor
muscles and tendons arises from the transfer of energy generated by the impact.
Correlations between racquet vibration levels and grip pressure characteristics need to be
made before a comprehensive understanding of energy transfer to the player can be
established. It is important that the transfer mechanics be described in detail in order to
gain a greater insight into the effects of racquet impact forces on the player. Racquet
design can evolve based on the understanding of the racquet-hand interface mechanics,

which affect the racquet’ s dynamic behaviour.

Optimisation of racquet design currently focuses on the inherent structural properties
such as mass distribution, stiffness and additiona damping materials. However, the
dynamic properties of the racquet (i.e. natural frequencies etc.) will not be the same under
the hand-held conditions during a match. Extra mass is added in the hand-held racquet in
the form of the hand as it becomes part of the system. This added mass will alter the
dynamic response of the racquet, in terms of natural frequencies and vibration damping.
Therefore optimisation of racquet design (in terms of vibration attenuation) can only be

achieved by incorporating the effects of the hand, with respect to its damping mechanics.



1.1 Rationale

The tennis elbow injury is thought to be caused by the transfer of shock and vibration
from the racquet to the player’ s hand and arm via the tennis grip. Efforts have been made
in equipment manufacturing to attenuate the levels of racquet shock and vibration
transmitted to the player. However, the shock and vibration attenuation equipment (such
as active/passive damping systems and additional damping materials) is less than optimal
and has often been manufactured without the underlying knowledge of the mechanics
involved in the transfer of the energy to the player. The specific knowledge regarding the
damping mechanics of the tennis grip would be valuable as it would describe the transfer

of racquet energy (in the form of shock and vibration) to the player.

The investigation of grip damping parameters can aid the development of more
appropriate design solutions for shock and vibration attenuation in racquet and bat-based
gports. Sports such as cricket, baseball, squash and golf al have racquets, bats or clubs
that can be thought of as hand-held simple beam structures. Therefore damping theories
used to aid optimisation in one type of racquet/bat sport may be applicable/ transferable

to other bat/racquets sports.

This research aims to describe the damping mechanics in the tennis grip and more
specifically to determine the degree of vibration absorption by the tennis grip. The
transfer of racquet shock to the player is aso of concern when researching upper
extremity injuries (due to the large loads involved); however it is racquet vibration that
will be the main focus of this research. Experimental data will be obtained in this

research to analyse the tennis grip damping phenomena. In order to do this, the research



will investigate the effects of varying grip tightness in relation to the associated vibration
absorption levels in the tennis grip. With respect to investigating grip tightness, this
research aims to analyse the effect of grip pressure changes on the dynamic response of
the tennis racquet during and after impact. This will be achieved by giving a
comprehensive characterisation of tennis grip pressure distributions for a range of tennis
strokes, such as the forehand and the problematic backhand. The tennis grip has been
guantified to show the distribution of pressure across the racquet handle and identify
pressure variations during impact. Experimental quantification of racquet damping is
achieved and discussed with respect to controlling parameters such as the tennis grip.
With the knowledge of the tennis gripping pressures, correlations are made with the

structural damping of the racquet.

The overall research objective was to investigate the underlying parameters that
contribute to the transfer of shock and vibration to the player. The injury of tennis elbow
itself needed to be reviewed before specific research objectives could be made in order to
achieve the overal research objective. It was important to understand the injury and its
associated symptoms if the research was to add to current knowledge and aid the
management of tennis elbow. It is also important to understand the kind of biomechanical

characteristics that instigate and aggravate injuries such as lateral epicondylitis.

1.2 Literaturereview
This section provides a comprehensive overview of the existing body of knowledge
relating to the present research problem. The key areas of concern for the present

research needing to be reviewed are as follows:



= Understanding of upper extremity tennis injuries such as lateral epicondylitis in
order to understand the contributing effects of racquet shock and vibration
transmission.

= Current knowledge regarding the characteristic structural dynamic properties of
tennis racquets.

= Findings regarding the damping parameters involved during impact, including the
current knowledge concerning the effects of the player’s hand and the tennis ball
on the damping of racquet frame vibrations.

= Knowledge regarding the mechanics of the tennis grip during impact in terms of

gripping tightness variations.

A review of the current body of knowledge covering these key outlined areas is required

in order for appropriate research objectives to be formulated for this research

1.2.1 Overview of lateral epicondylitis

Lateral epicondylitis (tennis elbow) is defined as the pain around the elbow that causes
discomfort when playing tennis (Kamien 1990). The pain felt by the player is caused by
the overuse of the wrist extensors in the forearm causing tendonitis. The overuse of the
wrist extensors causes micro tears at the tendonous origin (lateral epicondyle) of the
extensor carpi radialis brevis (wrist extensor) (Ollivierre and Nirschl 1996; Cassel and
McGrath 1999). The micro tears are generated in the early stages of the injury and
develop into larger lesions over time as the injury is aggravated. Figure 1 shows an

anatomical depiction of lateral epicondylitis.
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Figure 1. Anatomical diagram of lateral epicondylitis (Source: med.umich.edu)

Micro tears in the muscles and tendons in the forearm and surrounding the elbow begin to
appear with the overuse of the wrist extensors. The symptoms of lateral epicondylitis can
also arise from the tendon origin being placed under excessive loads. The micro tears of
tendonitis can vary in their magnitude and, as previously mentioned, they are mainly
located at the tendon-bone junction of the elbow (Kamien 1990). The micro tears will
continuously heal and re-appear, leaving scar tissue. An accumulation of scar tissue at the
lateral epicondyle appears after repeated tears, which then as a result become rough, and
calcium deposits begin to appear. Collagen then leaks from the injured area and causes
the elbow to become inflamed and painful. In extreme cases tennis elbow can lead to the
circulation being cut off to the lower arm and restricting the nerves that control the arm
and hand. However, the main causes of the pain felt by a tennis player range from an
inflamed synovial fringe of the elbow joint to calcific tendonitis (Kamien 1990). The pain
factor caused by tendonitis is the main issue for the tennis player as it leads to increases
in fatigue and loss of racquet control during play (Brody 1989). Aggravations of the

injury are believed to include excessive strain placed on the insertion of the lateral

10



tendons at the lateral epicondyle of the humerus, and the absorption of post-impact
racquet vibrations by the wrist extensors and tendonous origin. The management of
tennis elbow (i.e. injury prevention devices and rehabilitation methods) needs to be
optimised to reduce its inhibiting effects. Aggravating causes therefore require research

and need to be addressed if injury management is to become optimised.

The elbow injuries are not only found in the sporting world. The person suffering fro